5 research outputs found

    Coulometry and Calorimetry of Electric Double Layer Formation in Porous Electrodes

    Full text link
    Coulometric measurements on salt-water-immersed nanoporous carbon electrodes reveal, at a fixed voltage, a charge decrease with increasing temperature. During far-out-of-equilibrium charging of these electrodes, calorimetry indicates the production of both irreversible Joule heat and reversible heat, the latter being associated with entropy changes during electric double layer (EDL) formation in the nanopores. These measurements grant experimental access --for the first time-- to the entropic contribution of the grand potential; for our electrodes, this amounts to roughly 25% of the total grand potential energy cost of EDL formation at large applied potentials, in contrast with point-charge model calculations that predict 100%. The coulometric and calorimetric experiments show a consistent picture of the role of heat and temperature in EDL formation and provide hitherto unused information to test against EDL models.Comment: 11 pages, 10 figure

    Using Questionable Research Practices to Survive in Academia

    No full text
    In this project we will provide all supplementary materials belonging to the paper: van de Schoot, R., Winter, S.D., Griffioen, E., Grimmelikhuijsen, S., Arts, I., Veen, D., B.M. Grandfield & Tummers, L. (under review). Using Questionable Research Practices to Survive in Academia

    The Use of Questionable Research Practices to Survive in Academia Examined With Expert Elicitation, Prior-Data Conflicts, Bayes Factors for Replication Effects, and the Bayes Truth Serum

    Get PDF
    The popularity and use of Bayesian methods have increased across many research domains. The current article demonstrates how some less familiar Bayesian methods can be used. Specifically, we applied expert elicitation, testing for prior-data conflicts, the Bayesian Truth Serum, and testing for replication effects via Bayes Factors in a series of four studies investigating the use of questionable research practices (QRPs). Scientifically fraudulent or unethical research practices have caused quite a stir in academia and beyond. Improving science starts with educating Ph.D. candidates: the scholars of tomorrow. In four studies concerning 765 Ph.D. candidates, we investigate whether Ph.D. candidates can differentiate between ethical and unethical or even fraudulent research practices. We probed the Ph.D.s’ willingness to publish research from such practices and tested whether this is influenced by (un)ethical behavior pressure from supervisors or peers. Furthermore, 36 academic leaders (deans, vice-deans, and heads of research) were interviewed and asked to predict what Ph.D.s would answer for different vignettes. Our study shows, and replicates, that some Ph.D. candidates are willing to publish results deriving from even blatant fraudulent behavior–data fabrication. Additionally, some academic leaders underestimated this behavior, which is alarming. Academic leaders have to keep in mind that Ph.D. candidates can be under more pressure than they realize and might be susceptible to using QRPs. As an inspiring example and to encourage others to make their Bayesian work reproducible, we published data, annotated scripts, and detailed output on the Open Science Framework (OSF)

    The Use of Questionable Research Practices to Survive in Academia Examined With Expert Elicitation, Prior-Data Conflicts, Bayes Factors for Replication Effects, and the Bayes Truth Serum

    No full text
    The popularity and use of Bayesian methods have increased across many research domains. The current article demonstrates how some less familiar Bayesian methods can be used. Specifically, we applied expert elicitation, testing for prior-data conflicts, the Bayesian Truth Serum, and testing for replication effects via Bayes Factors in a series of four studies investigating the use of questionable research practices (QRPs). Scientifically fraudulent or unethical research practices have caused quite a stir in academia and beyond. Improving science starts with educating Ph.D. candidates: the scholars of tomorrow. In four studies concerning 765 Ph.D. candidates, we investigate whether Ph.D. candidates can differentiate between ethical and unethical or even fraudulent research practices. We probed the Ph.D.s’ willingness to publish research from such practices and tested whether this is influenced by (un)ethical behavior pressure from supervisors or peers. Furthermore, 36 academic leaders (deans, vice-deans, and heads of research) were interviewed and asked to predict what Ph.D.s would answer for different vignettes. Our study shows, and replicates, that some Ph.D. candidates are willing to publish results deriving from even blatant fraudulent behavior–data fabrication. Additionally, some academic leaders underestimated this behavior, which is alarming. Academic leaders have to keep in mind that Ph.D. candidates can be under more pressure than they realize and might be susceptible to using QRPs. As an inspiring example and to encourage others to make their Bayesian work reproducible, we published data, annotated scripts, and detailed output on the Open Science Framework (OSF)
    corecore