141 research outputs found
Magnetic Fields in Earth-like Exoplanets and Implications for Habitability around M-dwarfs
We present estimations of dipolar magnetic moments for terrestrial exoplanets
using the Olson & Christiansen (2006) scaling law and assuming their interior
structure is similar to Earth. We find that the dipolar moment of fast rotating
planets (where the Coriolis force dominates convection in the core), may amount
up to ~80 times the magnetic moment of Earth, M_Earth, for at least part of the
planets' lifetime. For very slow rotating planets (where the force of inertia
dominates), the dipolar magnetic moment only reaches up to ~1.5 M_Earth.
Applying our calculations to currently confirmed rocky exoplanets, we find that
CoRoT-7b, Kepler-10b and 55 Cnc e can sustain dynamos up to ~ 18, 15 and 13
M_Earth, respectively. Our results also indicate that the magnetic moment of
rocky exoplanets not only depends on their rotation rate, but also on their
formation history, thermal state, age and composition, as well as the geometry
of the field. These results apply to all rocky planets, but have important
implications for the particular case of exoplanets in the Habitable Zone of
M-dwarfs.Comment: 4 pages, 1 figure, to appear in the Origins 2011 ISSOL & IAU Meeting
Conference Proceedings, Montpellier, France, July 3-8 201
Kinetic theory of periodic holes in debunched particle beams
A self-consistent theory of periodic hole structures in coasting beams in synchrotrons and storage rings is presented, extending the theory on localized holes. The analysis reveals new intrinsic nonlinear modes which owe their existence to a deficiency of particles trapped in the self-sustained potential well, showing up as notches in the thermal range of the distribution function. It is therefore the full set of Vlasov-Poisson equations which is invoked; linearized treatments as well their nonlinear extensions fundamentally fail to cope with this strongly nonthermodynamic phenomenon. Qualitative agreement with the holes recently found at the CERN proton synchrotron booster is shown. (24 refs)
The Search for Signatures Of Transient Mass Loss in Active Stars
The habitability of an exoplanet depends on many factors. One such factor is
the impact of stellar eruptive events on nearby exoplanets. Currently this is
poorly constrained due to heavy reliance on solar scaling relationships and a
lack of experimental evidence. Potential impacts of Coronal Mass Ejections
(CMEs), which are a large eruption of magnetic field and plasma from a star,
are space weather and atmospheric stripping. A method for observing CMEs as
they travel though the stellar atmosphere is the type II radio burst, and the
new LOw Frequency ARray (LOFAR) provides a means for detection. We report on 15
hours of observation of YZ Canis Minoris (YZ CMi), a nearby M dwarf flare star,
taken in LOFAR's beam-formed observation mode for the purposes of measuring
transient frequency-dependent low frequency radio emission. The observations
utilized Low-Band Antenna (10-90 MHz) or High-Band Antenna (110-190 MHz) for
five three-hour observation periods. In this data set, there were no confirmed
type II events in this frequency range. We explore the range of parameter space
for type II bursts constrained by our observations Assuming the rate of shocks
is a lower limit to the rate at which CMEs occur, no detections in a total of
15 hours of observation places a limit of shocks/hr for YZ CMi due to the stochastic nature of the events and
limits of observational sensitivity. We propose a methodology to interpret
jointly observed flares and CMEs which will provide greater constraints to CMEs
and test the applicability of solar scaling relations
A deep campaign to characterize the synchronous radio/X-ray mode switching of PSR B0943+10
We report on simultaneous X-ray and radio observations of the mode-switching
pulsar PSR B0943+10 obtained with the XMM-Newton satellite and the LOFAR, LWA
and Arecibo radio telescopes in November 2014. We confirm the synchronous
X-ray/radio switching between a radio-bright (B) and a radio-quiet (Q) mode, in
which the X-ray flux is a factor ~2.4 higher than in the B-mode. We discovered
X-ray pulsations, with pulsed fraction of 38+/-5% (0.5-2 keV), during the
B-mode, and confirm their presence in Q-mode, where the pulsed fraction
increases with energy from ~20% up to ~65% at 2 keV. We found marginal evidence
for an increase in the X-ray pulsed fraction during B-mode on a timescale of
hours. The Q-mode X-ray spectrum requires a fit with a two-component model
(either a power-law plus blackbody or the sum of two blackbodies), while the
B-mode spectrum is well fit by a single blackbody (a single power-law is
rejected). With a maximum likelihood analysis, we found that in Q-mode the
pulsed emission has a thermal blackbody spectrum with temperature ~3.4x10^6 K
and the unpulsed emission is a power-law with photon index ~2.5, while during
B-mode both the pulsed and unpulsed emission can be fit by either a blackbody
or a power law with similar values of temperature and photon index. A Chandra
image shows no evidence for diffuse X-ray emission. These results support a
scenario in which both unpulsed non-thermal emission, likely of magnetospheric
origin, and pulsed thermal emission from a small polar cap (~1500 m^2) with a
strong non-dipolar magnetic field (~10^{14} G), are present during both radio
modes and vary in intensity in a correlated way. This is broadly consistent
with the predictions of the partially screened gap model and does not
necessarily imply global magnetospheric rearrangements to explain the mode
switching.Comment: To be published on The Astrophysical Journa
Simultaneous Radio And X-Ray Observations Of Psr B0611+22
We report results from simultaneous radio and X-ray observations of PSR B0611+22 which is known to exhibit bursting in its single-pulse emission. The pulse phase of the bursts vary with radio frequency. The bursts are correlated in 327/150 MHz data sets while they are anti-correlated, with bursts at one frequency associated with normal emission at the other, in 820/150 MHz data sets. Also, the flux density of this pulsar is lower than expected at 327 MHz assuming a power law. We attribute this unusual behaviour to the pulsar itself rather than absorption by external astrophysical sources. Using this data set over an extensive frequency range, we show that the bursting phenomenon in this pulsar exhibits temporal variance over a span of few hours. We also show that the bursting is quasi-periodic over the observed band. The anti-correlation in the phase offset of the burst mode at different frequencies suggests that the mechanisms responsible for phase offset and flux enhancement have different dependencies on the frequency. We did not detect the pulsar with XMM-Newton and place a 99 per cent confidence upper limit on the X-ray efficiency of 10-5
Magnetospheric Emission from Extrasolar Planets
The magnetospheric emissions from extrasolar planets represent a science
frontier for the next decade. All of the solar system giant planets and the
Earth produce radio emissions as a result of interactions between their
magnetic fields and the solar wind. In the case of the Earth, its magnetic
field may contribute to its habitability by protecting its atmosphere from
solar wind erosion and by preventing energetic particles from reaching its
surface. Indirect evidence for at least some extrasolar giant planets also
having magnetic fields includes the modulation of emission lines of their host
stars phased with the planetary orbits, likely due to interactions between the
stellar and planetary magnetic fields. If magnetic fields are a generic
property of giant planets, then extrasolar giant planets should emit at radio
wavelengths allowing for their direct detection. Existing observations place
limits comparable to the flux densities expected from the strongest emissions.
Additional sensitivity at low radio frequencies coupled with algorithmic
improvements likely will enable a new means of detection and characterization
of extrasolar planets within the next decade.Comment: Science white paper for Astro2010; submitted to PSF pane
First detection of frequency-dependent, time-variable dispersion measures
Donner J, Verbiest J, Tiburzi C, et al. First detection of frequency-dependent, time-variable dispersion measures. Astronomy & Astrophysics. 2019;624: A22.Context. High-precision pulsar-timing experiments are affected by temporal variations of the dispersion measure (DM), which are related to spatial variations in the interstellar electron content and the varying line of sight to the source. Correcting for DM variations relies on the cold-plasma dispersion law which states that the dispersive delay varies with the squared inverse of the observing frequency. This may, however, give incorrect measurements if the probed electron content (and therefore the DM) varies with observing frequency, as is predicted theoretically due to the different refraction angles at different frequencies.
Aims. We study small-scale density variations in the ionised interstellar medium. These structures may lead to frequency-dependent DMs in pulsar signals. Such an effect could inhibit the use of lower-frequency pulsar observations as tools to correct time-variable interstellar dispersion in higher-frequency pulsar-timing data.
Methods. We used high-cadence, low-frequency observations with three stations from the German LOng-Wavelength (GLOW) consortium, which are part of the LOw-Frequency ARray (LOFAR). Specifically, 3.5 yr of weekly observations of PSR J2219+4754 are presented.
Results. We present the first detection of frequency-dependent DMs towards any interstellar object and a precise multi-year time-series of the time- and frequency-dependence of the measured DMs. The observed DM variability is significant and may be caused by extreme scattering events. Potential causes for frequency-dependent DMs are quantified and evaluated.
Conclusions. We conclude that frequency dependence of DMs has been reliably detected and is indeed caused by small-scale (up to tens of AUs) but steep density variations in the interstellar electron content. We find that long-term trends in DM variability equally affect DMs measured at both ends of our frequency band and hence the negative impact on long-term high-precision timing projects is expected to be limited
- …