140 research outputs found

    Proximity of Transmembrane Segments 5 and 8 of the Glutamate Transporter GLT-1 Inferred from Paired Cysteine Mutagenesis

    Get PDF
    BACKGROUND: GLT-1 is a glial glutamate transporter which maintains low synaptic concentrations of the excitatory neurotransmitter enabling efficient synaptic transmission. Based on the crystal structure of the bacterial homologue Glt(Ph), it has been proposed that the reentrant loop HP2, which connects transmembrane domains (TM) 7 and 8, moves to open and close access to the binding pocket from the extracellular medium. However the conformation change between TM5 and TM8 during the transport cycle is not clear yet. We used paired cysteine mutagenesis in conjunction with treatments with Copper(II)(1,10-Phenanthroline)(3) (CuPh), to verify the predicted proximity of residues located at these structural elements of GLT-1. METHODOLOGY/PRINCIPAL FINDINGS: To assess the proximity of transmembrane domain (TM) 5 relative to TM8 during transport by the glial glutamate transporter GLT-1/EAAT2, cysteine pairs were introduced at the extracellular ends of these structural elements. A complete inhibition of transport by Copper(II)(1,10-Phenanthroline)(3) is observed in the double mutants I295C/I463C and G297C/I463C, but not in the corresponding single mutants. Glutamate and potassium, both expected to increase the proportion of inward-facing transporters, significantly protected against the inhibition of transport activity of I295C/I463C and G297C/I463C by CuPh. Transport by the double mutants I295C/I463C and G297C/I463C also was inhibited by Cd(2+). CONCLUSIONS/SIGNIFICANCE: Our results suggest that TM5 (Ile-295, Gly-297) is in close proximity to TM8 (Ile-463) in the mammalian transporter, and that the spatial relationship between these domains is altered during the transport cycle

    β Subunit M2–M3 Loop Conformational Changes Are Uncoupled from α1 β Glycine Receptor Channel Gating: Implications for Human Hereditary Hyperekplexia

    Get PDF
    Hereditary hyperekplexia, or startle disease, is a neuromotor disorder caused mainly by mutations that either prevent the surface expression of, or modify the function of, the human heteromeric α1 β glycine receptor (GlyR) chloride channel. There is as yet no explanation as to why hyperekplexia mutations that modify channel function are almost exclusively located in the α1 to the exclusion of β subunit. The majority of these mutations are identified in the M2–M3 loop of the α1 subunit. Here we demonstrate that α1 β GlyR channel function is less sensitive to hyperekplexia-mimicking mutations introduced into the M2–M3 loop of the β than into the α1 subunit. This suggests that the M2–M3 loop of the α subunit dominates the β subunit in gating the α1 β GlyR channel. A further attempt to determine the possible mechanism underlying this phenomenon by using the voltage-clamp fluorometry technique revealed that agonist-induced conformational changes in the β subunit M2–M3 loop were uncoupled from α1 β GlyR channel gating. This is in contrast to the α subunit, where the M2–M3 loop conformational changes were shown to be directly coupled to α1 β GlyR channel gating. Finally, based on analysis of α1 β chimeric receptors, we demonstrate that the structural components responsible for this are distributed throughout the β subunit, implying that the β subunit has evolved without the functional constraint of a normal gating pathway within it. Our study provides a possible explanation of why hereditary hyperekplexia-causing mutations that modify α1 β GlyR channel function are almost exclusively located in the α1 to the exclusion of the β subunit

    Fast Homeostatic Plasticity of Inhibition via Activity-Dependent Vesicular Filling

    Get PDF
    Synaptic activity in the central nervous system undergoes rapid state-dependent changes, requiring constant adaptation of the homeostasis between excitation and inhibition. The underlying mechanisms are, however, largely unclear. Chronic changes in network activity result in enhanced production of the inhibitory transmitter GABA, indicating that presynaptic GABA content is a variable parameter for homeostatic plasticity. Here we tested whether such changes in inhibitory transmitter content do also occur at the fast time scale required to ensure inhibition-excitation-homeostasis in dynamic cortical networks. We found that intense stimulation of afferent fibers in the CA1 region of mouse hippocampal slices yielded a rapid and lasting increase in quantal size of miniature inhibitory postsynaptic currents. This potentiation was mediated by the uptake of GABA and glutamate into presynaptic endings of inhibitory interneurons (the latter serving as precursor for the synthesis of GABA). Thus, enhanced release of inhibitory and excitatory transmitters from active networks leads to enhanced presynaptic GABA content. Thereby, inhibitory efficacy follows local neuronal activity, constituting a negative feedback loop and providing a mechanism for rapid homeostatic scaling in cortical circuits

    The Effects of NR2 Subunit-Dependent NMDA Receptor Kinetics on Synaptic Transmission and CaMKII Activation

    Get PDF
    N-Methyl-d-aspartic acid (NMDA) receptors are widely expressed in the brain and are critical for many forms of synaptic plasticity. Subtypes of the NMDA receptor NR2 subunit are differentially expressed during development; in the forebrain, the NR2B receptor is dominant early in development, and later both NR2A and NR2B are expressed. In heterologous expression systems, NR2A-containing receptors open more reliably and show much faster opening and closing kinetics than do NR2B-containing receptors. However, conflicting data, showing similar open probabilities, exist for receptors expressed in neurons. Similarly, studies of synaptic plasticity have produced divergent results, with some showing that only NR2A-containing receptors can drive long-term potentiation and others showing that either subtype is capable of driving potentiation. In order to address these conflicting results as well as open questions about the number and location of functional receptors in the synapse, we constructed a Monte Carlo model of glutamate release, diffusion, and binding to NMDA receptors and of receptor opening and closing as well as a model of the activation of calcium-calmodulin kinase II, an enzyme critical for induction of synaptic plasticity, by NMDA receptor-mediated calcium influx. Our results suggest that the conflicting data concerning receptor open probabilities can be resolved, with NR2A- and NR2B-containing receptors having very different opening probabilities. They also support the conclusion that receptors containing either subtype can drive long-term potentiation. We also are able to estimate the number of functional receptors at a synapse from experimental data. Finally, in our models, the opening of NR2B-containing receptors is highly dependent on the location of the receptor relative to the site of glutamate release whereas the opening of NR2A-containing receptors is not. These results help to clarify the previous findings and suggest future experiments to address open questions concerning NMDA receptor function

    Drug-induced amino acid deprivation as strategy for cancer therapy

    Full text link

    Investigation of the α<sub>1</sub>-Glycine Receptor Channel-Opening Kinetics in the Submillisecond Time Domain

    Get PDF
    The activation and desensitization kinetics of the human α1-homooligomeric glycine receptor, which was transiently expressed in HEK 293 cells, were studied with a 100-μs time resolution to determine the rate and equilibrium constants of individual receptor reaction steps. Concentration jumps of the activating ligands glycine and β-alanine were initiated by photolysis of caged, inactive precursors and were followed by neurotransmitter binding, receptor-channel opening, and receptor desensitization steps that were separated along the time axis. Analysis of the ligand concentration-dependence of these processes allows the determination of 1) the rate constants of glycine binding, k+1 ∼107 M−1 s−1, and dissociation, k−1 = 1900 s−1; 2) the rates of receptor-channel opening, kop = 2200 s−1, and closing, kcl = 38 s−1; 3) the receptor desensitization rate, α = 0.45 s−1; 4) the number of occupied ligand binding sites necessary for receptor-channel activation and desensitization, n ≥ 3; and 5) the maximum receptor-channel open probability, p0 > 0.95. The kinetics of receptor-channel activation are insensitive to the transmembrane potential. A general model for glycine receptor activation explaining the experimental data consists of a sequential mechanism based on rapid ligand-binding steps preceding a rate-limiting receptor-channel opening reaction and slow receptor desensitization

    The anion conductance of the glutamate transporter EAAC1 depends on the direction of glutamate transport

    Get PDF
    The steady-state and pre-steady-state kinetics of glutamate transport by the neuronal glutamate transporter EAAC1 were determined under conditions of outward glutamate transport and compared to those found for the inward transport mode. In both transport modes, the glutamate-induced current is composed of two components, the coupled transport current and the uncoupled anion current, and inhibited by a specific non-transportable inhibitor. Furthermore, the glutamate-independent leak current is observed in both transport modes. Upon a glutamate concentration jump outward transport currents show a distinct transient phase that deactivates within 15 ms. The results demonstrate that the general properties of EAAC1 are symmetric, but the rates of substrate transport and anion flux are asymmetric with respect to the orientation of the substrate binding site in the membrane. Therefore, the EAAC1 anion conductance differs from normal ligand-gated ion channels in that it can be activated by glutamate and Na+ from both sides of the membrane
    corecore