19 research outputs found
Mechanical and tribological characteristics of a-C:H:SiOx films formed by PACVD on titanium alloy VT1-0
This paper is devoted to the study of the mechanical and tribological properties of aC:H:SiOx films deposited on a titanium alloy VT1-0 by a plasma chemical deposition method using pulsed bipolar bias voltage. It was shown that after deposition of 2 [mu]m-thick a-C:H:SiOx film on a titanium alloy VT1-0 sample, the root-mean-square surface roughness Rq measured using atomic force microscopy decreased from 74 to 50 nm compared to the original substrate. The surface hardness H measured using nanoindentation increased from 3.3 to 12.4 GPa with an almost unchanged elasticity modulus E. As a result, the plasticity index (H/E) of titanium samples increased from 0.03 to 0.11, and the plastic deformation resistance (H3/E2 ) increased from 3 to 156 MPa. Deposition of a-C:H:SiOx film on the titanium alloy VT1-0 surface makes possible to reduce the friction coefficient from 0.3-0.6 to 0.1 and the wear rate from 6Β·10-4 to 7β’10{-6} mm{3} /Nm
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΡΡΠΎΠΌΠ±ΠΎΡΠΈΡΠΎΠ² Π½Π° a-C:H:SiOx ΠΏΠΎΠΊΡΡΡΠΈΠ΅, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠ»Π°Π·ΠΌΠΎΡ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ
Aim. To study platelet adhesion to a-C:H:SiOx film on titanium in an in vitro experiment to evaluate itsΒ antithrombogenic potential.Materials and methods. Thin (less than 1 ΞΌm) a-C:H:SiOx films were deposited on VT-6 titanium plates with aΒ size of 10 Γ 10 mm2 and a thickness of 0.2 mm using a vacuum ion-plasma unit using pulsed bipolar bias. TheΒ surface roughness was evaluated according to GOST 2789-73 using an atomic force microscope. The test samplesΒ were cultured at 37 Β°C for 30 min in platelet-rich human blood plasma, prepared for scanning electron microscopy,Β after which the distribution density of blood plates adhering to the test coating was calculated.Results. With the same roughness index of the studied a-C:H:SiOx samples, the film decreased 116 times (inΒ comparison with untreated titanium) the platelet count per 1 mm2 of the surface.Conclusion. The deposition of a-C:H:SiOx thin film on the surface of VT-6 titanium alloy by PACVD methodΒ using pulsed bipolar bias significantly reduces the distribution density of platelets in comparison with an untreatedΒ metal surface. In vitro data suggest a significant antithrombogenic potential of this type of coating on the surfaceΒ of devices in contact with blood.Π¦Π΅Π»Ρ. ΠΠ·ΡΡΠΈΡΡ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ΅ in vitro Π°Π΄Π³Π΅Π·ΠΈΡ ΡΡΠΎΠΌΠ±ΠΎΡΠΈΡΠΎΠ² ΠΊ a-C:H:SiOx ΠΏΠ»Π΅Π½ΠΊΠ΅ Π½Π° ΡΠΈΡΠ°Π½Π΅ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π΅Π΅Β Π°ΡΡΠΎΠΌΠ±ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π°.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π’ΠΎΠ½ΠΊΠΈΠ΅ (ΠΌΠ΅Π½Π΅Π΅ 1 ΠΌΠΊΠΌ) a-C:H:SiOx ΠΏΠ»Π΅Π½ΠΊΠΈ Π½Π°Π½ΠΎΡΠΈΠ»ΠΈ Π½Π° ΡΠΈΡΠ°Π½ΠΎΠ²ΡΠ΅ ΠΏΠ»Π°ΡΡΠΈΠ½Ρ ΠΌΠ°ΡΠΊΠΈΒ ΠΠ’-6 ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ 10 Γ 10 ΠΌΠΌ2 ΠΈ ΡΠΎΠ»ΡΠΈΠ½ΠΎΠΉ 0,2 ΠΌΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π²Π°ΠΊΡΡΠΌΠ½ΠΎΠΉΒ ΠΈΠΎΠ½Π½ΠΎ-ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ.Β Π¨Π΅ΡΠΎΡ
ΠΎΠ²Π°ΡΠΎΡΡΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎΒ ΠΠΠ‘Π’ 2789-73 Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π°ΡΠΎΠΌΠ½ΠΎ-ΡΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ°. ΠΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΠ΅ ΠΎΠ±ΡΠ°Π·ΡΡ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΏΡΠΈ 37 Β°CΒ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 30 ΠΌΠΈΠ½ Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠΎΠ²ΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½Π½ΠΎΠΉ ΡΡΠΎΠΌΠ±ΠΎΡΠΈΡΠ°ΠΌΠΈ, ΠΏΠΎΠ΄Π³ΠΎΡΠ°Π²Π»ΠΈΠ²Π°Π»ΠΈ Π΄Π»Ρ ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ΅ΠΉΒ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ, ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΠΎΠ΄ΡΡΠΈΡΡΠ²Π°Π»ΠΈ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡΒ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΡΠΎΠ²ΡΠ½ΡΡ
ΠΏΠ»Π°ΡΡΠΈΠ½ΠΎΠΊ, Π°Π΄Π³Π΅Π·ΠΈΡΡΡΡΠΈΡ
ΠΊ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠΌΡ ΠΏΠΎΠΊΡΡΡΠΈΡ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΌ ΠΈΠ½Π΄Π΅ΠΊΡΠ΅ ΡΠ΅ΡΠΎΡ
ΠΎΠ²Π°ΡΠΎΡΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² a-C:H:SiOx ΠΏΠ»Π΅Π½ΠΊΠ° Π² 116 ΡΠ°Π·Β ΡΠ½ΠΈΠΆΠ°Π»Π° (Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ Π½Π΅ΠΎΠ±ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΌ ΡΠΈΡΠ°Π½ΠΎΠΌ) ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΒ ΡΡΠΎΠΌΠ±ΠΎΡΠΈΡΠΎΠ² Π½Π° 1 ΠΌΠΌ2 ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. Π€ΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΡΠΈΡΠ°Π½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΏΠ»Π°Π²Π° ΠΠ’-6 ΡΠΎΠ½ΠΊΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΈ ΡΠΎΡΡΠ°Π²Π° a-C:H:SiOxΒ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠ»Π°Π·ΠΌΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌΒ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ½ΠΈΠΆΠ°Π΅Ρ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΒ ΡΡΠΎΠΌΠ±ΠΎΡΠΈΡΠΎΠ² Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ Π½Π΅ΠΎΠ±ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡΡ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ in vitro Π΄Π°Π½Π½ΡΠ΅ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ Π°ΡΡΠΎΠΌΠ±ΠΎΠ³Π΅Π½Π½ΡΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π» Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°Β ΠΏΠΎΠΊΡΡΡΠΈΠΉ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΡΡΡΡΠΎΠΉΡΡΠ², ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΈΡΡΡΡΠΈΡ
Ρ ΠΊΡΠΎΠ²ΡΡ
(Cr1−xAlx)N Coating Deposition by Short-Pulse High-Power Dual Magnetron Sputtering
The paper deals with the (Cr1−xAlx)N coating containing 17 to 54 % Al which is deposited on AISI 430 stainless steel stationary substrates by short-pulse high-power dual magnetron sputtering of Al and Cr targets. The Al/Cr ratio in the coating depends on the substrate position relative to magnetrons. It is shown that the higher Al content in the (Cr1−xAlx)N coating improves its hardness from 17 to 28 GPa. Regardless of the Al content, the (Cr1−xAlx)N coating manifests a low wear rate, namely (4.1–7.8) × 10−9 and (3.9–5.3) × 10−7 mm3N−1m−1 in using metallic (100Cr6) and ceramic (Al2O3) counter bodies, respectively. In addition, this coating possesses the friction coefficient 0.4–0.7 and adhesive strength quality HF1 and HF2 indicating good interfacial adhesion according to the Daimler-Benz Rockwell-C adhesion test
Properties of TiAlN Coatings Obtained by Dual-HiPIMS with Short Pulses
The paper focuses on the dual high-power impulse magnetron sputtering of TiAlN coatings using short pulses of high power delivered to the target. The surface morphology, elemental composition, phase composition, hardness, wear resistance, and adhesive strength of TiAlN coatings with different Al contents were investigated on WC–Co substrates. The heat resistance of the TiAlN coating was determined with synchrotron X-ray diffraction. The hardness of the TiAlN coating with a low Al content ranged from 17 to 30 GPa, and its wear rate varied between 1.8∙10−6 and 4.9∙10−6 mm3·N−1·m−1 depending on the substrate bias voltage. The HF1–HF2 adhesion strength of the TiAlN coatings was evaluated with the Daimler–Benz Rockwell C test. The hardness and wear rate of the Ti0.61Al0.39N coating were 26.5 GPa and 5.2∙10−6 mm3·N−1·m−1, respectively. The annealing process at 700 °C considerably worsened the mechanical properties of the Ti0.94Al0.06N coating, in contrast to the Ti0.61Al0.39N coating, which manifested a high oxidation resistance at annealing temperatures of 940–950 °C
Properties of TiAlN Coatings Obtained by Dual-HiPIMS with Short Pulses
The paper focuses on the dual high-power impulse magnetron sputtering of TiAlN coatings using short pulses of high power delivered to the target. The surface morphology, elemental composition, phase composition, hardness, wear resistance, and adhesive strength of TiAlN coatings with different Al contents were investigated on WCβCo substrates. The heat resistance of the TiAlN coating was determined with synchrotron X-ray diffraction. The hardness of the TiAlN coating with a low Al content ranged from 17 to 30 GPa, and its wear rate varied between 1.8β10β6 and 4.9β10β6 mm3Β·Nβ1Β·mβ1 depending on the substrate bias voltage. The HF1βHF2 adhesion strength of the TiAlN coatings was evaluated with the DaimlerβBenz Rockwell C test. The hardness and wear rate of the Ti0.61Al0.39N coating were 26.5 GPa and 5.2β10β6 mm3Β·Nβ1Β·mβ1, respectively. The annealing process at 700 Β°C considerably worsened the mechanical properties of the Ti0.94Al0.06N coating, in contrast to the Ti0.61Al0.39N coating, which manifested a high oxidation resistance at annealing temperatures of 940β950 Β°C
In Vitro Biodegradation of a-C:H:SiO<sub>x</sub> Films on Ti-6Al-4V Alloy
This paper focuses mainly on the in vitro study of a five-week biodegradation of a-C:H:SiOx films of different thickness, obtained by plasma-assisted chemical vapor deposition onto Ti-6Al-4V alloy substrate using its pulsed bipolar biasing. In vitro immersion of a-C:H:SiOx films in a solution of 0.9% NaCl was used. It is shown how the a-C:H:SiOx film thickness (0.5β3 Β΅m) affects the surface morphology, adhesive strength, and Na+ and Clβ precipitation on the film surface from the NaCl solution. With increasing film thickness, the roughness indices are reducing a little. The adhesive strength of the a-C:H:SiOx films to metal substrate corresponds to quality HF1 (0.5 Β΅m in thickness) and HF2-HF3 (1.5β3 Β΅m in thickness) of the Rockwell hardness test (VDI 3198) that defines strong interfacial adhesion and is usually applied in practice. The morphometric analysis of the film surface shows that on a-C:H:SiOx-coated Ti-6Al-4V alloy surface, the area occupied by the grains of sodium chloride is lower than on the uncoated surface. The reduction in the ion precipitation from 0.9% NaCl onto the film surface depended on the elemental composition of the surface layer conditioned by the thickness growth of the a-C:H:SiOx film. Based on the results of energy dispersive X-ray spectroscopy, the multiple regression equations are suggested to explain the effect of the elemental composition of the a-C:H:SiOx film on the decreased Na+ and Clβ precipitation. As a result, the a-C:H:SiOx films successfully combine good adhesion strength and rare ion precipitation and thus are rather promising for medical applications on cardiovascular stents and/or friction parts of heart pumps