1,051 research outputs found
Large Magellanic Cloud Planetary Nebula Morphology: Probing Stellar Populations and Evolution
Planetary Nebulae (PNe) in the Large Magellanic Cloud (LMC) offer the unique
opportunity to study both the Population and evolution of low- and
intermediate-mass stars, by means of the morphological type of the nebula.
Using observations from our LMC PN morphological survey, and including images
available in the HST Data Archive, and published chemical abundances, we find
that asymmetry in PNe is strongly correlated with a younger stellar Population,
as indicated by the abundance of elements that are unaltered by stellar
evolution (Ne, Ar, S). While similar results have been obtained for Galactic
PNe, this is the first demonstration of the relationship for extra-galactic
PNe. We also examine the relation between morphology and abundance of the
products of stellar evolution. We found that asymmetric PNe have higher
nitrogen and lower carbon abundances than symmetric PNe. Our two main results
are broadly consistent with the predictions of stellar evolution if the
progenitors of asymmetric PNe have on average larger masses than the
progenitors of symmetric PNe. The results bear on the question of formation
mechanisms for asymmetric PNe, specifically, that the genesis of PNe structure
should relate strongly to the Population type, and by inference the mass, of
the progenitor star, and less strongly on whether the central star is a member
of a close binary system.Comment: The Astrophysical Journal Letters, in press 4 figure
Predicting the public health benefit of vaccinating cattle against Escherichia coli O157
Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattleβhuman species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naΓ―ve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the humanβanimal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases
Spitzer IRAC observations of newly-discovered planetary nebulae from the Macquarie-AAO-Strasbourg H-alpha Planetary Nebula Project
We compare H-alpha, radio continuum, and Spitzer Space Telescope (SST) images
of 58 planetary nebulae (PNe) recently discovered by the Macquarie-AAO-Strasbo-
urg H-alpha PN Project (MASH) of the SuperCOSMOS H-alpha Survey. Using InfraRed
Array Camera (IRAC) data we define the IR colors of PNe and demonstrate good
isolation between these colors and those of many other types of astronomical
object. The only substantive contamination of PNe in the color-color plane we
illustrate is due to YSOs. However, this ambiguity is readily resolved by the
unique optical characteristics of PNe and their environs. We also examine the
relationships between optical and MIR morphologies from 3.6 to 8.0um and
explore the ratio of mid-infrared (MIR) to radio nebular fluxes, which is a
valuable discriminant between thermal and nonthermal emission. MASH emphasizes
late evolutionary stages of PNe compared with previous catalogs, enabling study
of the changes in MIR and radio flux that attend the aging process. Spatially
integrated MIR energy distributions were constructed for all MASH PNe observed
by the GLIMPSE Legacy Project, using the H-alpha morphologies to establish the
dimensions for the calculations of the Midcourse Space Experiment (MSX), IRAC,
and radio continuum (from the Molonglo Observatory Synthesis Telescope and the
Very Large Array) flux densities. The ratio of IRAC 8.0-um to MSX 8.3-um flux
densities provides a measure of the absolute diffuse calibration of IRAC at 8.0
um. We independently confirm the aperture correction factor to be applied to
IRAC at 8.0um to align it with the diffuse calibration of MSX. The result
agrees with the recommendations of the Spitzer Science Center and with results
from a parallel study of HII regions. These PNe probe the diffuse calibration
of IRAC on a spatial scale of 9-77 arcsec.Comment: 48 pages, LaTeX (aastex), incl. 18 PostScript (eps) figures and 3
tables. Accepted by Astrophysical Journa
A Genome-Wide Analysis Reveals No Nuclear Dobzhansky-Muller Pairs of Determinants of Speciation between S. cerevisiae and S. paradoxus, but Suggests More Complex Incompatibilities
The Dobzhansky-Muller (D-M) model of speciation by genic incompatibility is widely accepted as the primary cause of interspecific postzygotic isolation. Since the introduction of this model, there have been theoretical and experimental data supporting the existence of such incompatibilities. However, speciation genes have been largely elusive, with only a handful of candidate genes identified in a few organisms. The Saccharomyces sensu stricto yeasts, which have small genomes and can mate interspecifically to produce sterile hybrids, are thus an ideal model for studying postzygotic isolation. Among them, only a single D-M pair, comprising a mitochondrially targeted product of a nuclear gene and a mitochondrially encoded locus, has been found. Thus far, no D-M pair of nuclear genes has been identified between any sensu stricto yeasts. We report here the first detailed genome-wide analysis of rare meiotic products from an otherwise sterile hybrid and show that no classic D-M pairs of speciation genes exist between the nuclear genomes of the closely related yeasts S. cerevisiae and S. paradoxus. Instead, our analyses suggest that more complex interactions, likely involving multiple loci having weak effects, may be responsible for their post-zygotic separation. The lack of a nuclear encoded classic D-M pair between these two yeasts, yet the existence of multiple loci that may each exert a small effect through complex interactions suggests that initial speciation events might not always be mediated by D-M pairs. An alternative explanation may be that the accumulation of polymorphisms leads to gamete inviability due to the activities of anti-recombination mechanisms and/or incompatibilities between the species' transcriptional and metabolic networks, with no single pair at least initially being responsible for the incompatibility. After such a speciation event, it is possible that one or more D-M pairs might subsequently arise following isolation
Individualization as driving force of clustering phenomena in humans
One of the most intriguing dynamics in biological systems is the emergence of
clustering, the self-organization into separated agglomerations of individuals.
Several theories have been developed to explain clustering in, for instance,
multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of
fish, and animal herds. A persistent puzzle, however, is clustering of opinions
in human populations. The puzzle is particularly pressing if opinions vary
continuously, such as the degree to which citizens are in favor of or against a
vaccination program. Existing opinion formation models suggest that
"monoculture" is unavoidable in the long run, unless subsets of the population
are perfectly separated from each other. Yet, social diversity is a robust
empirical phenomenon, although perfect separation is hardly possible in an
increasingly connected world. Considering randomness did not overcome the
theoretical shortcomings so far. Small perturbations of individual opinions
trigger social influence cascades that inevitably lead to monoculture, while
larger noise disrupts opinion clusters and results in rampant individualism
without any social structure. Our solution of the puzzle builds on recent
empirical research, combining the integrative tendencies of social influence
with the disintegrative effects of individualization. A key element of the new
computational model is an adaptive kind of noise. We conduct simulation
experiments to demonstrate that with this kind of noise, a third phase besides
individualism and monoculture becomes possible, characterized by the formation
of metastable clusters with diversity between and consensus within clusters.
When clusters are small, individualization tendencies are too weak to prohibit
a fusion of clusters. When clusters grow too large, however, individualization
increases in strength, which promotes their splitting.Comment: 12 pages, 4 figure
Mediation in the Law Curriculum
Cited by Lord Neuberger in βEducating Future Mediatorsβ at the 4th Civil Mediation Council National Conference, May 201
A Mixture of βCheatsβ and βCo-Operatorsβ Can Enable Maximal Group Benefit
It is commonly assumed that the world would be best off if everyone co-operates. Experimental and mathematical analysis of βco-operationβ in yeast show why this isn't always the case
Multi-site genetic analysis of diffusion images and voxelwise heritability analysis : a pilot project of the ENIGMAβDTI working group
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMAβDTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18β85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/)
Activation of P2X7-mediated apoptosis Inhibits DMBA/TPA-induced formation of skin papillomas and cancer in mice
<p>Abstract</p> <p>Background</p> <p>The study tested the hypothesis that apoptosis can prevent and control growth of neoplastic cells. Previous studies in-vitro have shown that the pro-apoptotic P2X<sub>7 </sub>receptor regulates growth of epithelial cells. The specific objective of the present study was to understand to what degree the P2X<sub>7 </sub>system controls development and growth of skin cancer in vivo, and what cellular and molecular mechanisms are involved in the P2X<sub>7 </sub>action.</p> <p>Methods</p> <p>Skin neoplasias in mice (papillomas, followed by squamous spindle-cell carcinomas) were induced by local application of DMBA/TPA. Experiments in-vitro utilized cultured epidermal keratinocytes generated from wild-type or from P2X<sub>7</sub>-null mice. Assays involved protein immunostaining and Western blots; mRNA real-time qPCR; and apoptosis (evaluated in situ by TUNEL and quantified in cultured keratinocytes as solubilized DNA or by ELISA). Changes in cytosolic calcium or in ethidium bromide influx (P2X<sub>7 </sub>pore formation) were determined by confocal laser microscopy.</p> <p>Results</p> <p>(a) Co-application on the skin of the P2X<sub>7 </sub>specific agonist BzATP inhibited formation of DMBA/TPA-induced skin papillomas and carcinomas. At the completion of study (week 28) the proportion of living animals with cancers in the DMBA/TPA group was 100% compared to 43% in the DMBA/TPA+BzATP group. (b) In the normal skin BzATP affected mainly P2X<sub>7</sub>-receptor β expressing proliferating keratinocytes, where it augmented apoptosis without evoking inflammatory changes. (c) In BzATP-treated mice the degree of apoptosis was lesser in cancer than in normal or papilloma keratinocytes. (d) Levels of P2X<sub>7 </sub>receptor, protein and mRNA were 4β5 fold lower in cancer tissues than in normal mouse tissues. (e) In cultured mouse keratinocytes BzATP induced apoptosis, formation of pores in the plasma membrane, and facilitated prolonged calcium influx. (f) The BzATP-induced apoptosis, pore-formation and augmented calcium influx had similar dose-dependence for BzATP. (g) Pore formation and the augmented calcium influx were depended on the expression of the P2X<sub>7 </sub>receptor, while the BzATP-induced apoptosis depended on calcium influx. (h) The BzATP-induced apoptosis could be blocked by co-treatment with inhibitors of caspase-9 and caspase-3, but not of caspase-8.</p> <p>Conclusion</p> <p>(a) P2X<sub>7</sub>-dependent apoptosis is an important mechanism that controls the development and progression of epidermal neoplasia in the mouse. (b) The P2X<sub>7</sub>-dependent apoptosis is mediated by calcium influx via P2X<sub>7 </sub>pores, and involves the caspase-9 (mitochondrial) pathway. (c) The diminished pro-apoptotic effect of BzATP in mouse cancer keratinocytes is possibly the result of low expression of the P2X<sub>7 </sub>receptor. (d) Activation of P2X<sub>7</sub>-dependent apoptosis, e.g. with BzATP could be a novel chemotherapeutic growth-preventive modality for papillomas and epithelial cancers in vivo.</p
Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes
Copyright: Β© 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514
- β¦