6,484 research outputs found
Learning Adjustment Sets from Observational and Limited Experimental Data
Estimating causal effects from observational data is not always possible due
to confounding. Identifying a set of appropriate covariates (adjustment set)
and adjusting for their influence can remove confounding bias; however, such a
set is typically not identifiable from observational data alone. Experimental
data do not have confounding bias, but are typically limited in sample size and
can therefore yield imprecise estimates. Furthermore, experimental data often
include a limited set of covariates, and therefore provide limited insight into
the causal structure of the underlying system. In this work we introduce a
method that combines large observational and limited experimental data to
identify adjustment sets and improve the estimation of causal effects. The
method identifies an adjustment set (if possible) by calculating the marginal
likelihood for the experimental data given observationally-derived prior
probabilities of potential adjustmen sets. In this way, the method can make
inferences that are not possible using only the conditional dependencies and
independencies in all the observational and experimental data. We show that the
method successfully identifies adjustment sets and improves causal effect
estimation in simulated data, and it can sometimes make additional inferences
when compared to state-of-the-art methods for combining experimental and
observational data.Comment: 10 pages, 5 figure
- …