154 research outputs found

    The dynamics of oceanic transform faults : constraints from geophysical, geochemical, and geodynamical modeling

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2008Segmentation and crustal accretion at oceanic transform fault systems are investigated through a combination of geophysical data analysis and geodynamical and geochemical modeling. Chapter 1 examines the effect of fault segmentation on the maximum predicted earthquake magnitude of an oceanic transform fault system. Results of thermal modeling suggest that fault segmentation by intra-transform spreading centers (ITSC) drastically reduces the available brittle area of a transform fault and thus limits the available earthquake rupture area. Coulomb stress models suggest that long ITSCs will prohibit static stress interaction between segments of a transform system and further limit the maximum possible magnitude of a given transform fault earthquake. In Chapter 2, gravity anomalies from a global set of oceanic transform fault systems are investigated. Surprisingly, negative residual mantle Bouguer gravity anomalies are found within fastslipping transform fault domains. These gravity observations suggest a mass deficit within fast-slipping transform faults, which may result from porosity variations, mantle serpentinization, and/or crustal thickness variations. Two-dimensional forward modeling and the correlation of the negative gravity anomalies to bathymetric highs indicate crustal thickness excesses in these locations. Finally, in Chapter 3, mantle thermal and melting models for a visco-plastic rheology are developed to investigate the process of mantle melting and crustal accretion at ITSCs within segmented transform faults, and are applied to the Siqueiros transform fault system. Models in which melt migrates into the transform fault domain from a large region of the mantle best explain the gravity-derived crustal thickness variations observed at the Siqueiros transform. Furthermore, a mantle potential temperature of 1350ºC and fractional crystallization at depths of 9 – 15.5 km best explain the major element composition variation observed at the Siqueiros transform.National Science Foundation Graduate Research Fellowship, Hollister Graduate Research Fellowship, WHOI Academic Programs Office – Research Fellowshi

    An Evaluation of a Maternal Health and Extreme Heat Exposure Training

    Get PDF
    Growing empirical evidence documents the potential risk of extreme heat exposure to pregnant individuals. These risks include adverse birth outcomes, such as preterm birth and low birth weight. Climate change will exacerbate extreme heat exposures to a large portion of the global population, and pregnant individuals need to understand the risks and protective measures needed. Maternal health workers are a key mechanism for conveying this information to pregnant individuals. The authors assess a training of maternal health workers in El Paso, Texas, through two research instruments. First, eight maternal health workers completed an educational workshop and consented to participation; pre- and post-test workshop data are reported. Second, and subsequent to the workshop, a focus group was undertaken with six maternal health workers; directed content analysis was used to synthesize and report patterns from this qualitative data. Assessments indicated that a training session can improve provider knowledge of maternal heat–health risks and can encourage providers to discuss heat risks with patients/clients. This pilot project offered an approach to raise awareness of extreme heat among maternal health workers. The authors encourage the development of similar trainings in other communities to improve the safety of pregnant individuals in warm regions and areas experiencing extreme heat

    The formation of the 8˚20’ N seamount chain, East Pacific rise

    Get PDF
    Near-axis seamounts provide a unique setting to investigate three-dimensional mantle processes associated with the formation of new oceanic crust and lithosphere. Here, we investigate the characteristics and evolution of the 8˚20’N Seamount Chain, a lineament of seamounts that extends ~ 175 km west of the East Pacific Rise (EPR) axis, just north of the fracture zone of the Siqueiros Transform Fault. Shipboard gravity, magnetic, and bathymetric data acquired in 2016 are utilized to constrain models of seamount emplacement and evolution. Geophysical observations indicate that these seamounts formed during four distinct episodes of volcanism coinciding with changes in regional plate motion that are also reflected in the development of intra-transform spreading centers (ITSCs) along the Siqueiros transform fault (Fornari et al. 1989; Pockalny et al. 1997). Although volcanism is divided into distinct segments, the magnetic data indicate continuous volcanic construction over long portions of the chain. Crustal thickness variations along the chain up to 0.75 km increase eastward, inferred from gravity measurements, suggest that plate reorganization has considerably impacted melt distribution in the area surrounding the Siqueiros-EPR ridge transform intersection. This appears to have resulted in increased volcanism and the formation of the 8˚20’N Seamounts. These findings indicate that melting processes in the mantle and subsequently the formation of new oceanic crust and lithosphere are highly sensitive to tectonic stress changes in the vicinity of fast spreading transform fault offsets

    Relative Timing of Off-Axis Volcanism from Sediment Thickness Estimates on the 8°20’N Seamount Chain, East Pacific Rise

    Get PDF
    Volcanic seamount chains on the flanks of mid-ocean ridges record variability in magmatic processes associated with mantle melting over several millions of years. However, the relative timing of magmatism on individual seamounts along a chain can be difficult to estimate without in situ sampling and is further hampered by Ar40/Ar39 dating limitations. The 8°20’N seamount chain extends ∼170 km west from the fast-spreading East Pacific Rise (EPR), north of and parallel to the western Siqueiros fracture zone. Here, we use multibeam bathymetric data to investigate relationships between abyssal hill formation and seamount volcanism, transform fault slip, and tectonic rotation. Near-bottom compressed high-intensity radiated pulse, bathymetric, and sidescan sonar data collected with the autonomous underwater vehicle Sentry are used to test the hypothesis that seamount volcanism is age-progressive along the seamount chain. Although sediment on seamount flanks is likely to be reworked by gravitational mass-wasting and current activity, bathymetric relief and Sentry vehicle heading analysis suggest that sedimentary accumulations on seamount summits are likely to be relatively pristine. Sediment thickness on the seamounts\u27 summits does not increase linearly with nominal crustal age, as would be predicted if seamounts were constructed proximal to the EPR axis and then aged as the lithosphere cooled and subsided away from the ridge. The thickest sediments are found at the center of the chain, implying the most ancient volcanism there, rather than on seamounts furthest from the EPR. The nonlinear sediment thickness along the 8°20’N seamounts suggests that volcanism can persist off-axis for several million years

    Geodynamic Models of Melt Generation and Extraction at Mid-Ocean Ridges

    Get PDF
    It is widely accepted that plate divergence at mid-ocean ridges drives mantle flow, mantle melting, and the formation of new oceanic crust. However, many of the details of this process remain obscure because of the inaccessibility of the mantle to direct observation. Thus, geodynamic models are needed to provide insight into the processes that control the formation of new crust and hydrothermal circulation at mid-ocean ridges. These models allow us to test governing parameters and investigate physical hypotheses and conceptual models derived from geological, geophysical, and geochemical observations. During the span of the Ridge 2000 Program, a new generation of models was developed to calculate the width of the melt region and the extent of melting beneath mid-ocean ridges, track the pathways along which melts may migrate, and predict melt and residual mantle compositions as the system evolves. Findings from these studies illustrate the importance of melt focusing for the efficient delivery of melt to the ridge axis, the complexities of migrating melt in the vicinity of ridge offsets, and the effect of mantle rheology in model calculations

    Genome Rearrangements Detected by SNP Microarrays in Individuals with Intellectual Disability Referred with Possible Williams Syndrome

    Get PDF
    Intellectual disability (ID) affects 2-3% of the population and may occur with or without multiple congenital anomalies (MCA) or other medical conditions. Established genetic syndromes and visible chromosome abnormalities account for a substantial percentage of ID diagnoses, although for approximately 50% the molecular etiology is unknown. Individuals with features suggestive of various syndromes but lacking their associated genetic anomalies pose a formidable clinical challenge. With the advent of microarray techniques, submicroscopic genome alterations not associated with known syndromes are emerging as a significant cause of ID and MCA.High-density SNP microarrays were used to determine genome wide copy number in 42 individuals: 7 with confirmed alterations in the WS region but atypical clinical phenotypes, 31 with ID and/or MCA, and 4 controls. One individual from the first group had the most telomeric gene in the WS critical region deleted along with 2 Mb of flanking sequence. A second person had the classic WS deletion and a rearrangement on chromosome 5p within the Cri du Chat syndrome (OMIM:123450) region. Six individuals from the ID/MCA group had large rearrangements (3 deletions, 3 duplications), one of whom had a large inversion associated with a deletion that was not detected by the SNP arrays.Combining SNP microarray analyses and qPCR allowed us to clone and sequence 21 deletion breakpoints in individuals with atypical deletions in the WS region and/or ID or MCA. Comparison of these breakpoints to databases of genomic variation revealed that 52% occurred in regions harboring structural variants in the general population. For two probands the genomic alterations were flanked by segmental duplications, which frequently mediate recurrent genome rearrangements; these may represent new genomic disorders. While SNP arrays and related technologies can identify potentially pathogenic deletions and duplications, obtaining sequence information from the breakpoints frequently provides additional information

    Cardiorespiratory fitness is associated with physical literacy in a large sample of Canadian children aged 8 to 12 years

    Get PDF
    Background The associations between cardiorespiratory fitness (CRF) and physical literacy in children are largely unknown. The aim of this study was to assess the relationships between CRF, measured using the 20-m shuttle run test (20mSRT), and components of physical literacy among Canadian children aged 8–12 years. Methods A total of 9393 (49.9% girls) children, with a mean (SD) age of 10.1 (±1.2) years, from a cross-sectional surveillance study were included for this analysis. The SRT was evaluated using a standardized 15 m or 20 m protocol. All 15 m SRTs were converted to 20mSRT values using a standardized formula. The four domains of physical literacy (Physical Competence, Daily Behaviour, Motivation and Confidence, and Knowledge and Understanding) were measured using the Canadian Assessment of Physical Literacy. Tertiles were identified for 20mSRT laps, representing low, medium, and high CRF for each age and gender group. Cohen’s d was used to calculate the effect size between the low and high CRF groups. Results CRF was strongly and favourably associated with all components of physical literacy among school-aged Canadian children. The effect size between low and high CRF tertile groups was large for the Physical Competence domain (Cohen’s d range: 1.11–1.94) across age and gender groups, followed by moderate to large effect sizes for Motivation and Confidence (Cohen’s d range: 0.54–1.18), small to moderate effect sizes for Daily Behaviour (Cohen’s d range: 0.25–0.81), and marginal to moderate effect sizes for Knowledge and Understanding (Cohen’s d range: 0.08–0.70). Conclusions This study identified strong favourable associations between CRF and physical literacy and its constituent components in children aged 8–12 years. Future research should investigate the sensitivity and specificity of the 20mSRT in screening those with low physical literacy levels
    corecore