4,970 research outputs found
Comparisons of elastic and creep deformation linearly dependent upon stress
The theory of linear elasticity provides a complete description of reversible deformation under small stresses for both isotropic and anisotropic solids. At elevated temperatures, creep deformation sometimes occurs at a rate that is linearly dependent upon stress. When this form of creep arises from vacancy movement, there is possibility of anisotropic behaviour through the orientational dependence of average grain dimensions. This indicates that the elasticity theory may be utilised to provide comparable descriptions of such creep deformation, with creep strain built up of equal increments of strain occurring in equal intervals of time. The extent of this analogy is explored with the conclusion that its usefulness is substantial when grains are small in relation to geometrical features of the component but it is no longer applicable when the grains approach the size of these features and where there is a high gradient of stress
Circuit enhances vertical resolution in raster scanning systems
Circuit enhances vertical resolution in electron beam, raster scanning systems exhibiting aperture distortion in the vertical direction. A sensitized area /image/ produces a video output when the scan beam nears it, which causes vertical elongation in the reconstructed images of all sensitized areas on the surface
Optimizing thermal transport in the Falicov-Kimball model: binary-alloy picture
We analyze the thermal transport properties of the Falicov-Kimball model
concentrating on locating regions of parameter space where the thermoelectric
figure-of-merit ZT is large. We focus on high temperature for power generation
applications and low temperature for cooling applications. We constrain the
static particles (ions) to have a fixed concentration, and vary the conduction
electron concentration as in the binary-alloy picture of the Falicov-Kimball
model. We find a large region of parameter space with ZT>1 at high temperature
and we find a small region of parameter space with ZT>1 at low temperature for
correlated systems, but we believe inclusion of the lattice thermal
conductivity will greatly reduce the low-temperature figure-of-merit.Comment: 13 pages, 14 figures, typeset with ReVTe
Integrated random processes exhibiting long tails, finite moments and 1/f spectra
A dynamical model based on a continuous addition of colored shot noises is
presented. The resulting process is colored and non-Gaussian. A general
expression for the characteristic function of the process is obtained, which,
after a scaling assumption, takes on a form that is the basis of the results
derived in the rest of the paper. One of these is an expansion for the
cumulants, which are all finite, subject to mild conditions on the functions
defining the process. This is in contrast with the Levy distribution -which can
be obtained from our model in certain limits- which has no finite moments. The
evaluation of the power spectrum and the form of the probability density
function in the tails of the distribution shows that the model exhibits a 1/f
spectrum and long tails in a natural way. A careful analysis of the
characteristic function shows that it may be separated into a part representing
a Levy processes together with another part representing the deviation of our
model from the Levy process. This allows our process to be viewed as a
generalization of the Levy process which has finite moments.Comment: Revtex (aps), 15 pages, no figures. Submitted to Phys. Rev.
Pairwise Correlation Analysis of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Dataset Reveals Significant Feature Correlation
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) contains extensive patient measurements (e.g., magnetic resonance imaging [MRI], biometrics, RNA expression, etc.) from Alzheimer’s disease (AD) cases and controls that have recently been used by machine learning algorithms to evaluate AD onset and progression. While using a variety of biomarkers is essential to AD research, highly correlated input features can significantly decrease machine learning model generalizability and performance. Additionally, redundant features unnecessarily increase computational time and resources necessary to train predictive models. Therefore, we used 49,288 biomarkers and 793,600 extracted MRI features to assess feature correlation within the ADNI dataset to determine the extent to which this issue might impact large scale analyses using these data. We found that 93.457% of biomarkers, 92.549% of the gene expression values, and 100% of MRI features were strongly correlated with at least one other feature in ADNI based on our Bonferroni corrected α (p-value ≤ 1.40754 × 10−13). We provide a comprehensive mapping of all ADNI biomarkers to highly correlated features within the dataset. Additionally, we show that significant correlation within the ADNI dataset should be resolved before performing bulk data analyses, and we provide recommendations to address these issues. We anticipate that these recommendations and resources will help guide researchers utilizing the ADNI dataset to increase model performance and reduce the cost and complexity of their analyses
Decay of isolated surface features driven by the Gibbs-Thomson effect in analytic model and simulation
A theory based on the thermodynamic Gibbs-Thomson relation is presented which
provides the framework for understanding the time evolution of isolated
nanoscale features (i.e., islands and pits) on surfaces. Two limiting cases are
predicted, in which either diffusion or interface transfer is the limiting
process. These cases correspond to similar regimes considered in previous works
addressing the Ostwald ripening of ensembles of features. A third possible
limiting case is noted for the special geometry of "stacked" islands. In these
limiting cases, isolated features are predicted to decay in size with a power
law scaling in time: A is proportional to (t0-t)^n, where A is the area of the
feature, t0 is the time at which the feature disappears, and n=2/3 or 1. The
constant of proportionality is related to parameters describing both the
kinetic and equilibrium properties of the surface. A continuous time Monte
Carlo simulation is used to test the application of this theory to generic
surfaces with atomic scale features. A new method is described to obtain
macroscopic kinetic parameters describing interfaces in such simulations.
Simulation and analytic theory are compared directly, using measurements of the
simulation to determine the constants of the analytic theory. Agreement between
the two is very good over a range of surface parameters, suggesting that the
analytic theory properly captures the necessary physics. It is anticipated that
the simulation will be useful in modeling complex surface geometries often seen
in experiments on physical surfaces, for which application of the analytic
model is not straightforward.Comment: RevTeX (with .bbl file), 25 pages, 7 figures from 9 Postscript files
embedded using epsf. Submitted to Phys. Rev. B A few minor changes made on
9/24/9
Graphite and Graphene Fairy Circles:A Bottom-Up Approach for the Formation of Nanocorrals
A convenient covalent functionalization approach and nanopatterning method of graphite and graphene is developed. In contrast to expectations, electrochemically activated dediazotization of a mixture of two aryl diazonium compounds in aqueous media leads to a spatially inhomogeneous functionalization of graphitic surfaces, creating covalently modified surfaces with quasi-uniform spaced islands of pristine graphite or graphene, coined nanocorrals. Cyclic voltammetry and chronoamperometry approaches are compared. The average diameter (45-130 nm) and surface density (20-125 corrals/μm 2 ) of these nanocorrals are tunable. These chemically modified nanostructured graphitic (CMNG) surfaces are characterized by atomic force microscopy, scanning tunneling microscopy, Raman spectroscopy and microscopy, and X-ray photoelectron spectroscopy. Mechanisms leading to the formation of these CMNG surfaces are discussed. The potential of these surfaces to investigate supramolecular self-assembly and on-surface reactions under nanoconfinement conditions is demonstrated. © 2019 American Chemical Society
Community Policing: Broken Windows, Community Building, and Satisfaction with the Police
The concept of community policing dominates the law enforcement profession today. One would be hard pressed to find an advertisement for a police chief’s position that does not require a thorough understanding of this method of policing. Like the Kansas City preventive patrol experiment and the Rand report on the criminal investigation process, the call for community policing has led to dramatic changes in the way that police carry out their responsibilities. In spite of its popularity, there have been a number of challenges to community policing from social scientists who are particularly concerned about the ‘broken windows’ model of policing. These challenges have not been received well by the law enforcement community, which argues that sociologists are wedded to the idea that crime is caused by the structural features of capitalist society, including economic injustice, racism, and poverty. The purpose of this article is to bridge the gap between these two positions. Yes, there is a place for community policing, and, yes, social problems do contribute to crime. The article starts by reviewing the development of community policing in the United States. An analysis of the theoretical constructs that support community policing then follows. Finally, we argue that there is sound theoretical evidence to support community policing, particularly those programmes that improve citizen satisfaction with the manner in which police carry out their responsibilities
A model for collisions in granular gases
We propose a model for collisions between particles of a granular material
and calculate the restitution coefficients for the normal and tangential motion
as functions of the impact velocity from considerations of dissipative
viscoelastic collisions. Existing models of impact with dissipation as well as
the classical Hertz impact theory are included in the present model as special
cases. We find that the type of collision (smooth, reflecting or sticky) is
determined by the impact velocity and by the surface properties of the
colliding grains. We observe a rather nontrivial dependence of the tangential
restitution coefficient on the impact velocity.Comment: 11 pages, 2 figure
Saturation of electrical resistivity
Resistivity saturation is observed in many metallic systems with a large
resistivity, i.e., when the resistivity has reached a critical value, its
further increase with temperature is substantially reduced. This typically
happens when the apparent mean free path is comparable to the interatomic
separations - the Ioffe-Regel condition. Recently, several exceptions to this
rule have been found. Here, we review experimental results and early theories
of resistivity saturation. We then describe more recent theoretical work,
addressing cases both where the Ioffe-Regel condition is satisfied and where it
is violated. In particular we show how the (semiclassical) Ioffe-Regel
condition can be derived quantum-mechanically under certain assumptions about
the system and why these assumptions are violated for high-Tc cuprates and
alkali-doped fullerides.Comment: 16 pages, RevTeX, 15 eps figures, additional material available at
http://www.mpi-stuttgart.mpg.de/andersen/saturation
- …