38 research outputs found

    Climate instability during the last interglacial period recorded in the GRIP ice core

    No full text
    Isotope and chemical analyses of the GRIP ice core from Summit, central Greenland, reveal that climate in Greenland during the last interglacial period was characterized by a series of severe cold periods, which began extremely rapidly and lasted from decades to centuries. As the last interglacial seems to have been slightly warmer than the present one, its unstable climate raises questions about the effects of future global warming

    Last Glacial Period Cryptotephra Deposits in an Eastern North Atlantic Marine Sequence: Exploring Linkages to the Greenland Ice-Cores

    Get PDF
    The establishment of a tephra framework for the Greenland ice-cores spanning the last glacial period, particularly between 25 and 45 ka b2k, provides strong potential for precisely correlating other palaeoclimatic records to these key archives. Tephra-based synchronisation allows the relative timing of past climatic changes recorded within different depositional environments and potential causal mechanisms to be assessed. Recent studies of North Atlantic marine records have demonstrated the potential of tracing cryptotephra horizons in these sequences and the development of protocols now allows a careful assessment of the isochronous nature of such horizons. Here we report on tephrochronological investigations of a marine sequence retrieved from the Goban Spur, Eastern North Atlantic, covering ?25–60 ka b2k. Density and magnetic separation techniques and an assessment of potential transport and depositional mechanisms have identified three previously unknown isochronous tephra horizons along with deposits of the widespread North Atlantic Ash Zone II and Faroe Marine Ash Zone III. Correlations between the new horizons and the Greenland ice-core tephra framework are explored and despite no tie-lines being identified the key roles that high-resolution climatostratigraphy and shard-specific trace element analysis can play within the assessment of correlations is demonstrated. The previously unknown horizons are new additions to the overall North Atlantic tephra framework for the last glacial period and could be key horizons for future correlations

    Sea level and climate changes during OIS 5e in the Western Mediterranean

    Get PDF
    Palaeontological, geomorphological and sedimentological data supported by isotopic dating on Oxygen Isotopic Stage (OIS) 5e deposits from the Spanish Mediterranean coast, are interpreted with the aim of reconstructing climatic instability in the Northern Hemisphere. Data point to marked climatic instability during the Last Interglacial (OIS 5e), with a change in meteorological conditions and, consequently, in the sedimentary environment. The oolitic facies generated during the first part of OIS 5e (ca. 135 kyr) shift into reddish conglomeratic facies during the second part (ca. 117 kyr). Sea surface Temperature (SST) and salinity are interpreted mainly on the basis of warm Senegalese fauna, which show chronological and spatial differential distribution throughout the Western Mediterranean. Present hydrological and meteorological conditions are used also as modern analogues to reconstruct climatic variability throughout the Last Interglacial, and this variability is interpreted within the wider framework of the North Atlantic record. All the available data indicate an increase in storminess induced by an increase in the influence of northwesterlies, a slight drop of SST in the northern Western Mediterranean, and an important change in meteorological conditions at the end of OIS 5e (117 kyr). These changes correlate well with the decrease in summer insolation and with the climatic instability recorded in North Atlantic high latitudes
    corecore