2,412 research outputs found
Recommended from our members
Excimer formation by steric twisting in carbazole and triphenylamine-based host materials
This paper presents a detailed spectroscopic investigation of luminescence properties of 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP) and N,N,N’,N’-tetraphenylbenzidine (TAD) in solutions and neat films. These compounds are compared to their derivatives CDBP and TDAD that contain methyl groups in the 2 and 2’ position of the biphenyl core. We find that whereas steric twisting in CDBP and TDAD leads to a high triplet energy of about 3.0 and 3.1 eV, respectively, these compounds also tend to form triplet excimers in a neat film, in contrast to CBP and TAD. By comparison with N-phenylcarbazole (NPC) and triphenylamine (TPA), on which these compounds are based, as well as with the rigid spiro analogs to CBP and TAD we show that the reduced excimer formation in CBP and TAD can be attributed to a localization of the excitation onto the central biphenyl part of the molecule
Into the fourth dimension
The influence of time on the drought response of Brassica rapa, an agriculturally important species of plant, has been clarified
Recommended from our members
Probing the switching mechanism in ZnO nanoparticle memristors
We investigate the resistance switching mechanism in memristors based on colloidal ZnO nanoparticles using electroabsorption (EA) spectroscopy. In this EA experiment, we incorporate a small amount of low-bandgap polymer, poly(9,9-dioctylfluorene-cobenzothiadiazole) (F8BT), as a probe molecule in ZnO-nanoparticle memristors. By characterizing this polymer, we can study the change of built-in potential (VBI) in the device during the resistance switching process without disturbing the resistance state by the EA probe light. Our results show that VBI increases when the device is switched to the high resistance state, suggesting a shift of effective workfunction of the electrode. Thus, we attribute the resistance switching to the field-dependent migration of oxygen vacancies associated with the adsorption and desorption of oxygen molecules at the Al/ZnO interface. This process results in the modulation of the interfacial injection barrier which governs the resistance state of the device.This work was supported by the Engineering and Physical Sciences Research Council [Grant Number EP/G060738/1]Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article "Probing the switching mechanism in ZnO nanoparticle memristors" has been accepted by Journal of Applied Physics. After it is published, it will be found at http://scitation.aip.org/content/aip/journal/ja
Identification of antisense nucleic acid hybridization sites in mRNA molecules with self-quenching fluorescent reporter molecules
We describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20–30 base oligodeoxynucleotides with 5–6 bp complementary ends to which a 5′ fluorophore and 3′ quenching group are attached. Alone, the SQRM complementary ends form a stem that holds the fluorophore and quencher in contact. When the SQRM forms base pairs with its target, the structure separates the fluorophore from the quencher. This event can be reported by fluorescence emission when the fluorophore is excited. The stem–loop of the SQRM suggests that SQRM be made to target natural stem–loop structures formed during mRNA synthesis. The general utility of this method is demonstrated by SQRM identification of targetable sequence within c-myb and bcl-6 mRNA. Corresponding antisense oligonucleotides reduce these gene products in cells
Spin signatures of exchange-coupled triplet pairs formed by singlet fission
We study the effect of an exchange interaction on the magnetic-field-dependent photoluminescence in singlet fission materials. We show that, for strongly interacting triplet exciton pairs (intertriplet exchange interaction greater than the intratriplet spin-dipolar interaction), quantum beating and magnetic-field effects vanish apart from at specific magnetic fields where singlet and quintet levels are mixed by a level anticrossing. We characterize these effects and show that the absence of a magnetic-field effect or zero-field quantum beats does not necessarily mean that fission is inoperative. These results call for a reconsideration of the observations that are considered hallmarks of singlet fission and demonstrate how the spin coherence and exchange coupling of interacting triplet pairs can be measured through magneto-photoluminescence experiments.Engineering and Physical Sciences Research Council (Grant ID: EP/G060738/1)This is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevB.94.04520
Spin-dependent recombination probed through the dielectric polarizability.
Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana-Brossel resonances observed in atomic physics experiments.This work was supported by the Engineering and Physical Sciences Research Council [Grants
No. EP/G060738/1]. A. D. C. acknowledges support from the E. Oppenheimer Foundation and St Catharine's
College, Cambridge. S. L. B. is grateful for support from the EPSRC Supergen SuperSolar Project, the Armourers
and Brasiers Gauntlet Trust and Magdalene College, Cambridge.This is the final published version of the article. It was originally published in Nature Communications (Bayliss et. al, Nature Communications 2015, 6, 8534, doi:10.1038/ncomms9534). The final version is available at http://dx.doi.org/10.1038/ncomms953
In situ optical measurement of charge transport dynamics in organic photovoltaics.
We present a novel experimental approach which allows extraction of both spatial and temporal information on charge dynamics in organic solar cells. Using the wavelength dependence of the photonic structure in these devices, we monitor the change in spatial overlap between the photogenerated hole distribution and the optical probe profile as a function of time. In a model system we find evidence for a buildup of the photogenerated hole population close to the hole-extracting electrode on a nanosecond time scale and show that this can limit charge transport through space-charge effects under operating conditions.This work was supported by the EPSRC [Grant number EP/
G060738/1].This is the author accepted manuscript. The final published version is available at http://pubs.acs.org/doi/abs/10.1021/nl503687u
Adsorption behavior and current-voltage characteristics of CdSe nanocrystals on hydrogen-passivated silicon
Electroluminescence from Organometallic Lead Halide Perovskite-Conjugated Polymer Diodes
Organometallic lead perovskite-based solar cells can be converted to light-emitting diodes by engineering the current density. Diodes are fabricated with adjacent perovskite and conjugated polymer layers using orthogonal solvents. Under forward bias, these devices show simultaneous emission from both the luminescent conjugated polymer and the perovskite, providing direct information on electron and hole recombination as a function of device architecture and bias voltage.We gratefully acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC). A.K. acknowledges NRF-Singapore for a scholarship.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/aelm.20150000
Computation of Electrostatic Field near Three-Dimensional Corners and Edges
Theoretically, the electric field becomes infinite at corners of two and
three dimensions and edges of three dimensions. Conventional finite-element and
boundary element methods do not yield satisfactory results at close proximity
to these singular locations. In this paper, we describe the application of a
fast and accurate BEM solver (which usesexact analytic expressions to compute
the effect of source distributions on flatsurfaces) to compute the electric
field near three-dimensional corners and edges. Results have been obtained for
distances as close as 1 near the corner/edge and good agreement has been
observed between the present results and existing analytical solutions.Comment: Presented in International Conference on Computational and
Experimental Engineering and Sciences held at IIT Madras, Chennai, India,
during 1-6 December, 200
- …
