7,969 research outputs found

    A General Precipitation-Limited L_X-T-R Relation Among Early-Type Galaxies

    Full text link
    The relation between X-ray luminosity (L_X) and ambient gas temperature (T) among massive galactic systems is an important cornerstone of both observational cosmology and galaxy-evolution modeling. In the most massive galaxy clusters, the relation is determined primarily by cosmological structure formation. In less massive systems, it primarily reflects the feedback response to radiative cooling of circumgalactic gas. Here we present a simple but powerful model for the L_X-T relation as a function of physical aperture R within which those measurements are made. The model is based on the precipitation framework for AGN feedback and assumes that the circumgalactic medium is precipitation-regulated at small radii and limited by cosmological structure formation at large radii. We compare this model with many different data sets and show that it successfully reproduces the slope and upper envelope of the L_X-T-R relation over the temperature range from ~0.2 keV through >10 keV. Our findings strongly suggest that the feedback mechanisms responsible for regulating star formation in individual massive galaxies have much in common with the precipitation-triggered feedback that appears to regulate galaxy-cluster cores.Comment: Submitted to ApJ, 9 pages, 3 figures (v2 fixes a few small typos

    The MASSIVE Survey - III. Molecular gas and a broken Tully-Fisher relation in the most massive early-type galaxies

    Get PDF
    In this work we present CO(1-0) and CO(2-1) observations of a pilot sample of 15 early-type galaxies (ETGs) drawn from the MASSIVE galaxy survey, a volume-limited integral-field spectroscopic study of the most massive ETGs (M∗>1011.5M⊙M_* >10^{11.5}M_\odot) within 108 Mpc. These objects were selected because they showed signs of an interstellar medium and/or star formation. A large amount of gas (>>2×\times108^8 M⊙_{\odot}) is present in 10 out of 15 objects, and these galaxies have gas fractions higher than expected based on extrapolation from lower mass samples. We tentatively interpret this as evidence that stellar mass loss and hot halo cooling may be starting to play a role in fuelling the most massive galaxies. These MASSIVE ETGs seem to have lower star-formation efficiencies (SFE=SFR/MH2_{\rm H2}) than spiral galaxies, but the SFEs derived are consistent with being drawn from the same distribution found in other lower mass ETG samples. This suggests that the SFE is not simply a function of stellar mass, but that local, internal processes are more important for regulating star formation. Finally we used the CO line profiles to investigate the high-mass end of the Tully-Fisher relation (TFR). We find that there is a break in the slope of the TFR for ETGs at high masses (consistent with previous studies). The strength of this break correlates with the stellar velocity dispersion of the host galaxies, suggesting it is caused by additional baryonic mass being present in the centre of massive ETGs. We speculate on the root cause of this change and its implications for galaxy formation theories.Comment: 13 pages, 7 figures, accepted by MNRA

    The Effect of Spatial Gradients in Stellar Mass-to-Light Ratio on Black Hole Mass Measurements

    Get PDF
    We have tested the effect of spatial gradients in stellar mass-to-light ratio (Y) on measurements of black hole masses (MBH) derived from stellar orbit superposition models. Such models construct a static gravitational potential for a galaxy and its central black hole, but typically assume spatially uniform Y. We have modeled three giant elliptical galaxies with gradients alpha = d(log Y)/d(log r) from -0.2 to +0.1. Color and line strength gradients suggest mildly negative alpha in these galaxies. Introducing a negative (positive) gradient in Y increases (decreases) the enclosed stellar mass near the center of the galaxy and leads to systematically smaller (larger) MBH measurements. For models with alpha = -0.2, the best-fit values of MBH are 28%, 27%, and 17% lower than the constant-Y case, in NGC 3842, NGC 6086, and NGC 7768, respectively. For alpha = +0.1, MBH are 14%, 22%, and 17% higher than the constant-Y case for the three respective galaxies. For NGC 3842 and NGC 6086, this bias is comparable to the statistical errors from individual modeling trials. At larger radii, negative (positive) gradients in Y cause the total stellar mass to decrease (increase) and the dark matter fraction within one effective radius to increase (decrease).Comment: 6 pages, 4 figures, 1 table. To appear in ApJ

    The MASSIVE Survey - VIII. Stellar Velocity Dispersion Profiles and Environmental Dependence of Early-Type Galaxies

    Full text link
    We measure the radial profiles of the stellar velocity dispersions, σ(R)\sigma(R), for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute KK-band magnitude MK<−25.3M_K < -25.3 mag, or stellar mass M∗>4×1011M⊙M_* > 4 \times 10^{11} M_\odot, within 108 Mpc. Our wide-field 107" ×\times 107" IFS data cover radii as large as 40 kpc, for which we quantify separately the inner (2 kpc) and outer (20 kpc) logarithmic slopes γinner\gamma_{\rm inner} and γouter\gamma_{\rm outer} of σ(R)\sigma(R). While γinner\gamma_{\rm inner} is mostly negative, of the 56 galaxies with sufficient radial coverage to determine γouter\gamma_{\rm outer} we find 36% to have rising outer dispersion profiles, 30% to be flat within the uncertainties, and 34% to be falling. The fraction of galaxies with rising outer profiles increases with M∗M_* and in denser galaxy environment, with 10 of the 11 most massive galaxies in our sample having flat or rising dispersion profiles. The strongest environmental correlations are with local density and halo mass, but a weaker correlation with large-scale density also exists. The average γouter\gamma_{\rm outer} is similar for brightest group galaxies, satellites, and isolated galaxies in our sample. We find a clear positive correlation between the gradients of the outer dispersion profile and the gradients of the velocity kurtosis h4h_4. Altogether, our kinematic results suggest that the increasing fraction of rising dispersion profiles in the most massive ETGs are caused (at least in part) by variations in the total mass profiles rather than in the velocity anisotropy alone.Comment: Accepted/in press, MNRA

    The MASSIVE Survey II: Stellar Population Trends Out to Large Radius in Massive Early Type Galaxies

    Full text link
    We examine stellar population gradients in ~100 massive early type galaxies spanning 180 < sigma* < 370 km/s and M_K of -22.5 to -26.5 mag, observed as part of the MASSIVE survey (Ma et al. 2014). Using integral-field spectroscopy from the Mitchell Spectrograph on the 2.7m telescope at McDonald Observatory, we create stacked spectra as a function of radius for galaxies binned by their stellar velocity dispersion, stellar mass, and group richness. With excellent sampling at the highest stellar mass, we examine radial trends in stellar population properties extending to beyond twice the effective radius (~2.5 R_e). Specifically, we examine trends in age, metallicity, and abundance ratios of Mg, C, N, and Ca, and discuss the implications for star formation histories and elemental yields. At a fixed physical radius of 3-6 kpc (the likely size of the galaxy cores formed at high redshift) stellar age and [alpha/Fe] increase with increasing sigma* and depend only weakly on stellar mass, as we might expect if denser galaxies form their central cores earlier and faster. If we instead focus on 1-1.5 R_e, the trends in abundance and abundance ratio are washed out, as might be expected if the stars at large radius were accreted by smaller galaxies. Finally, we show that when controlling for \sigmastar, there are only very subtle differences in stellar population properties or gradients as a function of group richness; even at large radius internal properties matter more than environment in determining star formation history.Comment: 17 pages, 9 figures, accepted by ApJ; resubmitted with updated reference

    The MASSIVE Survey - I. A Volume-Limited Integral-Field Spectroscopic Study of the Most Massive Early-Type Galaxies within 108 Mpc

    Full text link
    Massive early-type galaxies represent the modern-day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ~100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* > 10^{11.5} Msun and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.Comment: 19 pages, 14 figures. ApJ (2014) vol. 795, in pres

    Variation in pediatric traumatic brain injury outcomes in the United States.

    Get PDF
    OBJECTIVE: To ascertain the degree of variation, by state of hospitalization, in outcomes associated with traumatic brain injury (TBI) in a pediatric population. DESIGN: A retrospective cohort study of pediatric patients admitted to a hospital with a TBI. SETTING: Hospitals from states in the United States that voluntarily participate in the Agency for Healthcare Research and Quality's Healthcare Cost and Utilization Project. PARTICIPANTS: Pediatric (age ≤ 19 y) patients hospitalized for TBI (N=71,476) in the United States during 2001, 2004, 2007, and 2010. INTERVENTIONS: None. MAIN OUTCOME MEASURES: Primary outcome was proportion of patients discharged to rehabilitation after an acute care hospitalization among alive discharges. The secondary outcome was inpatient mortality. RESULTS: The relative risk of discharge to inpatient rehabilitation varied by as much as 3-fold among the states, and the relative risk of inpatient mortality varied by as much as nearly 2-fold. In the United States, approximately 1981 patients could be discharged to inpatient rehabilitation care if the observed variation in outcomes was eliminated. CONCLUSIONS: There was significant variation between states in both rehabilitation discharge and inpatient mortality after adjusting for variables known to affect each outcome. Future efforts should be focused on identifying the cause of this state-to-state variation, its relationship to patient outcome, and standardizing treatment across the United States

    The Potential of Teledentistry in Community Oral Health for the Pediatric Population

    Get PDF
    • Dental caries is the most prevalent chronic disease of childhood in the US. • Young children are a particularly vulnerable population because of their dependence, inability to communicate needs, and relative poverty. • Furthermore, this can be exacerbated by disparities such that an increased rates of caries are observed in children who are of low socioeconomic status and minority backgrounds. • However, community oral health screenings can play a vital role in childhood caries as a predominately preventable disease. • The current emphasis on social distance during the COVID-19 pandemic has brought attention to teledentistry, which may have a valuable role in the future of community oral health outreach

    The MASSIVE Survey - VII. The Relationship of Angular Momentum, Stellar Mass and Environment of Early-Type Galaxies

    Full text link
    We analyse the environmental properties of 370 local early-type galaxies (ETGs) in the MASSIVE and ATLAS3D surveys, two complementary volume-limited integral-field spectroscopic (IFS) galaxy surveys spanning absolute KK-band magnitude −21.5>MK>−26.6-21.5 > M_K > -26.6, or stellar mass 8×109<M∗<2×1012M⊙8 \times 10^{9} < M_* < 2 \times 10^{12} M_\odot. We find these galaxies to reside in a diverse range of environments measured by four methods: group membership (whether a galaxy is a brightest group/cluster galaxy, satellite, or isolated), halo mass, large-scale mass density (measured over a few Mpc), and local mass density (measured within the NNth neighbour). The spatially resolved IFS stellar kinematics provide robust measurements of the spin parameter λe\lambda_e and enable us to examine the relationship among λe\lambda_e, M∗M_*, and galaxy environment. We find a strong correlation between λe\lambda_e and M∗M_*, where the average λe\lambda_e decreases from ∼0.4\sim 0.4 to below 0.1 with increasing mass, and the fraction of slow rotators fslowf_{\rm slow} increases from ∼10\sim 10% to 90%. We show for the first time that at fixed M∗M_*, there are almost no trends between galaxy spin and environment; the apparent kinematic morphology-density relation for ETGs is therefore primarily driven by M∗M_* and is accounted for by the joint correlations between M∗M_* and spin, and between M∗M_* and environment. A possible exception is that the increased fslowf_{\rm slow} at high local density is slightly more than expected based only on these joint correlations. Our results suggest that the physical processes responsible for building up the present-day stellar masses of massive galaxies are also very efficient at reducing their spin, in any environment.Comment: Accepted to MNRA

    Pancreaticoduodenal transplantation in humans

    Get PDF
    Whole cadaveric pancreata were transplanted to the pelvic extraperitoneal location in four patients with diabetes who previously had undergone successful cadaveric renal transplantation. One graft was lost within a few hours from venous thrombosis but with patient survival. The other three are providing normal endocrine function after two and a half, 11 and 12 months. The exocrine pancreatic secretions were drained into the recipient jejunum through enteric anastomoses. Because mucosal slough of the graft and duodenum and jejunum in two patients caused a protein losing enteropathy and necessitated reoperations, we now do the pancreatic transplantation with only a blister of graft duodenum large enough for side-to-side enteroenterostomy. The spleen has been transplanted with the pancreas mainly for technical reasons, and this technique should have further trials in spite of the fact that delayed graft splenectomy became necessary in two recipients to treat graft induced hematologic complications
    • …
    corecore