2,547 research outputs found
Regulation of Neuronal Survival and Death by E2F-Dependent Gene Repression and Derepression
AbstractNeuronal death induced by a variety of means requires participation of the E2F family of transcription factors. Here, we show that E2F acts as a gene silencer in neurons and that repression of E2F-responsive genes is required for neuronal survival. Moreover, neuronal death evoked by DNA damaging agents or trophic factor withdrawal is characterized by derepression of E2F-responsive genes. Such derepression, rather than direct E2F-promoted gene activation, is required for death. Among the genes that are derepressed in neurons subjected to DNA damage or trophic factor withdrawal are the transcription factors B- and C-myb. Overexpression of B- and C-myb is sufficient to evoke neuronal death. These findings support a model in which E2F-dependent gene repression and derepression play pivotal roles in neuronal survival and death, respectively
Manipulation and Study of Gene Expression in Neurotoxin- Treated Neuronal PC12 and SH-SY5Y Cells for In Vitro Studies of Parkinson’s Disease
Neuronal PC12 and SH-SY5Y cells are highly suitable in vitro models for study of the neurodegenerative mechanisms occurring in Parkinson’s disease (PD). Differentiated PC12 and SH-SY5Y cells bear many similarities to the neuronal populations affected in PD, and they provide a convenient source of large amounts of homogeneous material for biochemical and molecular downstream applications. In the present review, we describe how to differentiate PC12 and SH-SY5Y cells into neuron-like cells and provide protocols for their transfection with plasmids and infection with viral particles to manipulate gene expression. We also describe how to treat neuronal PC12 and SH-SY5Y cells with the classical PD neurotoxins 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-pyridinium ion (MPP+). Finally, we give detailed methods for several downstream applications useful for the analysis of cell death pathways in PD
Recommended from our members
Dominant-negative ATF5 rapidly depletes survivin in tumor cells.
Survivin (BIRC5, product of the BIRC5 gene) is highly expressed in many tumor types and has been widely identified as a potential target for cancer therapy. However, effective anti-survivin drugs remain to be developed. Here we report that both vector-delivered and cell-penetrating dominant-negative (dn) forms of the transcription factor ATF5 that promote selective death of cancer cells in vitro and in vivo cause survivin depletion in tumor cell lines of varying origins. dn-ATF5 decreases levels of both survivin mRNA and protein. The depletion of survivin protein appears to be driven at least in part by enhanced proteasomal turnover and depletion of the deubiquitinase USP9X. Survivin loss is rapid and precedes the onset of cell death triggered by dn-ATF5. Although survivin downregulation is sufficient to drive tumor cell death, survivin over-expression does not rescue cancer cells from dn-ATF5-promoted apoptosis. This indicates that dn-ATF5 kills malignant cells by multiple mechanisms that include, but are not limited to, survivin depletion. Cell-penetrating forms of dn-ATF5 are currently being developed for potential therapeutic use and the present findings suggest that they may pose an advantage over treatments that target only survivin
Isolation and Culture of Post-Natal Mouse Cerebellar Granule Neuron Progenitor Cells and Neurons
The cerebellar cortex is a well described structure that provides unique opportunities for studying neuronal properties and development1,2. Of the cerebellar neuronal types (granule cells, Purkinje cells and inhibitory interneurons), granule neurons are by far the most numerous and are the most abundant type of neurons in the mammalian brain. In rodents, cerebellar granule neurons are generated during the first two post-natal weeks from progenitor cells in the outermost layer of the cerebellar cortex, the external granule layer (EGL). The protocol presented here describes techniques to enrich and culture granule neurons and their progenitor cells from post-natal mouse cerebellum. We will describe procedures to obtain cultures of increasing purity3,4, which can be used to study the differentiation of proliferating progenitor cells into granule neurons5,6. Once the progenitor cells differentiate, the cultures also provide a homogenous population of granule neurons for experimental manipulation and characterization of phenomena such as synaptogenesis, glutamate receptor function7, interaction with other purified cerebellar cells8,9 or cell death7
Recommended from our members
Nerve growth factor selectively regulates expression of transcripts encoding ribosomal proteins
Background: NGF exerts a variety of actions including promotion of neuronal differentiation and survival. The PC12 rat pheochromocytoma cell line has proved valuable for studying how NGF works and has revealed that the NGF mechanism includes regulation of gene expression. Accordingly, we used SAGE (Serial Analysis of Gene Expression) to compare levels of specific transcripts in PC12 cells before and after long-term NGF exposure. Of the approximately 22,000 transcripts detected and quantified, 4% are NGF-regulated by 6-fold or more. Here, we used database information to identify transcripts in our SAGE libraries that encode ribosomal proteins and have compared the effect of NGF on their relative levels of expression. Results: Among the transcripts detected in our SAGE analysis, 74 were identified as encoding ribosomal proteins. Ribosomal protein transcripts were among the most abundantly expressed and, for naive and NGF-treated PC12 cells, represented 5.2% and 3.5%, respectively, of total transcripts analyzed. Surprisingly, nearly half of ribosomal protein transcripts underwent statistically significant NGF-promoted alterations in relative abundance, with changes of up to 5-fold. Of the changes, approximately 2/3 represented decreases. A time course revealed that the relative abundance of transcripts encoding RPL9 increases within 1 hr of NGF treatment and is maximally elevated by 8 hr. Conclusions: These data establish that NGF selectively changes expression of ribosomal protein transcripts. These findings raise potential roles for regulation of ribosomal protein transcripts in NGF-promoted withdrawal from the cell cycle and neuronal differentiation and indicate that regulation of individual ribosomal protein transcripts is cell- and stimulus-specific
Recommended from our members
Context-dependent expression of a conditionally-inducible form of active Akt
Akt kinases are key signaling components in proliferation-competent and post-mitotic cells. Here, we sought to create a conditionally-inducible form of active Akt for both in vitro and in vivo applications. We fused a ligand-responsive Destabilizing Domain (DD) derived from E. coli dihydrofolate reductase to a constitutively active mutant form of Akt1, Akt(E40K). Prior work indicated that such fusion proteins may be stabilized and induced by a ligand, the antibiotic Trimethoprim (TMP). We observed dose-dependent, reversible induction of both total and phosphorylated/active DD-Akt(E40K) by TMP across several cellular backgrounds in culture, including neurons. Phosphorylation of FoxO4, an Akt substrate, was significantly elevated after DD-Akt(E40K) induction, indicating the induced protein was functionally active. The induced Akt(E40K) protected cells from apoptosis evoked by serum deprivation and was neuroprotective in two cellular models of Parkinson's disease (6-OHDA and MPP+ exposure). There was no significant protection without induction. We also evaluated Akt(E40K) induction by TMP in mouse substantia nigra and striatum after neuronal delivery via an AAV1 adeno-associated viral vector. While there was significant induction in striatum, there was no apparent induction in substantia nigra. To explore the possible basis for this difference, we examined DD-Akt(E40K) induction in cultured ventral midbrain neurons. Both dopaminergic and non-dopaminergic neurons in the cultures showed DD-Akt(E40K) induction after TMP treatment. However, basal DD-Akt(E40K) expression was 3-fold higher for dopaminergic neurons, resulting in a significantly lower induction by TMP in this population. Such findings suggest that dopaminergic neurons may be relatively inefficient in protein degradation, a property that could relate to their lack of apparent DD-Akt(E40K) induction in vivo and to their selective vulnerability in Parkinson's disease. In summary, we generated an inducible, biologically active form of Akt. The degree of inducibility appears to reflect cellular context that will inform the most appropriate applications for this and related reagents
Period and chemical evolution of SC stars
The SC and CS stars are thermal-pulsing AGB stars with C/O ratio close to
unity. Within this small group, the Mira variable BH Cru recently evolved from
spectral type SC (showing ZrO bands) to CS (showing weak C2). Wavelet analysis
shows that the spectral evolution was accompanied by a dramatic period
increase, from 420 to 540 days, indicating an expanding radius. The pulsation
amplitude also increased. Old photographic plates are used to establish that
the period before 1940 was around 490 days. Chemical models indicate that the
spectral changes were caused by a decrease in stellar temperature, related to
the increasing radius. There is no evidence for a change in C/O ratio. The
evolution in BH Cru is unlikely to be related to an on-going thermal pulse.
Periods of the other SC and CS stars, including nine new periods, are
determined. A second SC star, LX Cyg, also shows evidence for a large increase
in period, and one further star shows a period inconsistent with a previous
determination. Mira periods may be intrinsically unstable for C/O ~ 1; possibly
because of a feedback between the molecular opacities, pulsation amplitude, and
period. LRS spectra of 6 SC stars suggest a feature at wavelength > 15 micron,
which resembles one recently attributed to the iron-sulfide troilite. Chemical
models predict a large abundance of FeS in SC stars, in agreement with the
proposed association.Comment: 14 pages, 20 figures. MNRAS, 2004, accepted for publication. Janet
Mattei, one of the authors, died on 22 March, 2004. This paper is dedicated
to her memor
- …