2,547 research outputs found

    Regulation of Neuronal Survival and Death by E2F-Dependent Gene Repression and Derepression

    Get PDF
    AbstractNeuronal death induced by a variety of means requires participation of the E2F family of transcription factors. Here, we show that E2F acts as a gene silencer in neurons and that repression of E2F-responsive genes is required for neuronal survival. Moreover, neuronal death evoked by DNA damaging agents or trophic factor withdrawal is characterized by derepression of E2F-responsive genes. Such derepression, rather than direct E2F-promoted gene activation, is required for death. Among the genes that are derepressed in neurons subjected to DNA damage or trophic factor withdrawal are the transcription factors B- and C-myb. Overexpression of B- and C-myb is sufficient to evoke neuronal death. These findings support a model in which E2F-dependent gene repression and derepression play pivotal roles in neuronal survival and death, respectively

    Manipulation and Study of Gene Expression in Neurotoxin- Treated Neuronal PC12 and SH-SY5Y Cells for In Vitro Studies of Parkinson’s Disease

    Get PDF
    Neuronal PC12 and SH-SY5Y cells are highly suitable in vitro models for study of the neurodegenerative mechanisms occurring in Parkinson’s disease (PD). Differentiated PC12 and SH-SY5Y cells bear many similarities to the neuronal populations affected in PD, and they provide a convenient source of large amounts of homogeneous material for biochemical and molecular downstream applications. In the present review, we describe how to differentiate PC12 and SH-SY5Y cells into neuron-like cells and provide protocols for their transfection with plasmids and infection with viral particles to manipulate gene expression. We also describe how to treat neuronal PC12 and SH-SY5Y cells with the classical PD neurotoxins 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-pyridinium ion (MPP+). Finally, we give detailed methods for several downstream applications useful for the analysis of cell death pathways in PD

    Isolation and Culture of Post-Natal Mouse Cerebellar Granule Neuron Progenitor Cells and Neurons

    Get PDF
    The cerebellar cortex is a well described structure that provides unique opportunities for studying neuronal properties and development1,2. Of the cerebellar neuronal types (granule cells, Purkinje cells and inhibitory interneurons), granule neurons are by far the most numerous and are the most abundant type of neurons in the mammalian brain. In rodents, cerebellar granule neurons are generated during the first two post-natal weeks from progenitor cells in the outermost layer of the cerebellar cortex, the external granule layer (EGL). The protocol presented here describes techniques to enrich and culture granule neurons and their progenitor cells from post-natal mouse cerebellum. We will describe procedures to obtain cultures of increasing purity3,4, which can be used to study the differentiation of proliferating progenitor cells into granule neurons5,6. Once the progenitor cells differentiate, the cultures also provide a homogenous population of granule neurons for experimental manipulation and characterization of phenomena such as synaptogenesis, glutamate receptor function7, interaction with other purified cerebellar cells8,9 or cell death7

    Period and chemical evolution of SC stars

    Full text link
    The SC and CS stars are thermal-pulsing AGB stars with C/O ratio close to unity. Within this small group, the Mira variable BH Cru recently evolved from spectral type SC (showing ZrO bands) to CS (showing weak C2). Wavelet analysis shows that the spectral evolution was accompanied by a dramatic period increase, from 420 to 540 days, indicating an expanding radius. The pulsation amplitude also increased. Old photographic plates are used to establish that the period before 1940 was around 490 days. Chemical models indicate that the spectral changes were caused by a decrease in stellar temperature, related to the increasing radius. There is no evidence for a change in C/O ratio. The evolution in BH Cru is unlikely to be related to an on-going thermal pulse. Periods of the other SC and CS stars, including nine new periods, are determined. A second SC star, LX Cyg, also shows evidence for a large increase in period, and one further star shows a period inconsistent with a previous determination. Mira periods may be intrinsically unstable for C/O ~ 1; possibly because of a feedback between the molecular opacities, pulsation amplitude, and period. LRS spectra of 6 SC stars suggest a feature at wavelength > 15 micron, which resembles one recently attributed to the iron-sulfide troilite. Chemical models predict a large abundance of FeS in SC stars, in agreement with the proposed association.Comment: 14 pages, 20 figures. MNRAS, 2004, accepted for publication. Janet Mattei, one of the authors, died on 22 March, 2004. This paper is dedicated to her memor
    • …
    corecore