14 research outputs found

    New Phase Induced by Pressure in the Iron-Arsenide Superconductor K-Ba122

    Full text link
    The electrical resistivity rho of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured in applied pressures up to 2.6 GPa for four underdoped samples, with x = 0.16, 0.18, 0.19 and 0.21. The antiferromagnetic ordering temperature T_N, detected as a sharp anomaly in rho(T), decreases linearly with pressure. At pressures above around 1.0 GPa, a second sharp anomaly is detected at a lower temperature T_0, which rises with pressure. We attribute this second anomaly to the onset of a phase that causes a reconstruction of the Fermi surface. This new phase expands with increasing x and it competes with superconductivity. We discuss the possibility that a second spin-density wave orders at T_0, with a Q vector distinct from that of the spin-density wave that sets in at T_N.Comment: Two higher K concentrations were added, revealing a steady expansion of the new phase in the T-P phase diagra

    Experimental study of the delayed threshold phenomenon in a semiconductor laser

    Full text link
    An experimental study of the delayed threshold phenomenon in a Vertical Extended Cavity Semiconductor Emitting Laser is carried out. Under modulation of the pump power, the laser intensity exhibits a hysteresis behavior in the vicinity of the threshold. The temporal width of this hysteresis is measured as a function of the modulation frequency, and is proved to follow the predicted scaling law. A model based on the rate equations is derived and used to analyze the experimental observations. A frequency variation of the laser around the delayed threshold and induced by the phase-amplitude coupling is predicted and estimated

    Expansion of the Tetragonal Magnetic Phase with Pressure in the Iron Arsenide Superconductor Ba₁₋ₓKₓFe₂As₂

    Get PDF
    In the temperature-concentration phase diagram of most iron-based superconductors, antiferromagnetic order is gradually suppressed to zero at a critical point, and a dome of superconductivity forms around that point. The nature of the magnetic phase and its fluctuations is of fundamental importance for elucidating the pairing mechanism. In Ba1-xKxFe2As2 and Ba1-xNaxFe2As2, it has recently become clear that the usual stripelike magnetic phase, of orthorhombic symmetry, gives way to a second magnetic phase, of tetragonal symmetry, near the critical point, in the range from x = 0.24 to x=0.28 for Ba1-xKxFe2As2. In a prior study, an unidentified phase was discovered for x \u3c 0.24 but under applied pressure, whose onset was detected as a sharp anomaly in the resistivity. Here we report measurements of the electrical resistivity of Ba1-xKxFe2As2 under applied hydrostatic pressures up to 2.75 GPa, for x = 0.22, 0.24, and 0.28. The critical pressure above which the unidentified phase appears is seen to decrease with increasing x and vanish at x = 0.24, thereby linking the pressure-induced phase to the tetragonal magnetic phase observed at ambient pressure. In the temperature-concentration phase diagram of Ba1-xKxFe2As2, we find that pressure greatly expands the tetragonal magnetic phase, while the stripelike phase shrinks. This reveals that pressure may be a powerful tuning parameter with which to explore the interplay between magnetism and superconductivity in this material

    Dark spinor models in gravitation and cosmology

    Get PDF
    We introduce and carefully define an entire class of field theories based on non-standard spinors. Their dominant interaction is via the gravitational field which makes them naturally dark; we refer to them as Dark Spinors. We provide a critical analysis of previous proposals for dark spinors noting that they violate Lorentz invariance. As a working assumption we restrict our analysis to non-standard spinors which preserve Lorentz invariance, whilst being non-local and explicitly construct such a theory. We construct the complete energy-momentum tensor and derive its components explicitly by assuming a specific projection operator. It is natural to next consider dark spinors in a cosmological setting. We find various interesting solutions where the spinor field leads to slow roll and fast roll de Sitter solutions. We also analyse models where the spinor is coupled conformally to gravity, and consider the perturbations and stability of the spinor.Comment: 43 pages. Several new sections and details added. JHEP in prin

    Fermions in a Walecka-type cosmology

    Full text link
    A simplified Walecka-type model is investigated in a cosmological scenario. The model includes fermionic, scalar and vector fields as sources. It is shown that their interactions, taking place in a Robertson-Walker metric, could be responsible for the transition of accelerated-decelerated periods in the early universe and a current accelerated regime. It is also discussed the role of the fermionic field as the promoter of the accelerated regimes in the early and the late stages of the universe.Comment: 8 pages, 4 figures. To appear in EP

    Thermal phase fluctuations in optically pumped dual–frequency vertical external-cavity surface-emitting lasers for cesium clocks based on coherent population trapping

    No full text
    International audienceA fully analytical model is established for the thermal fluctuations of the beatnote phase of an optically pumped dual-frequency Vertical-External-Cavity Surface-Emitting Laser (VECSEL). This model starts with the resolution of the heat equation inside the semiconductor chip structure and follows with the evaluation of the induced thermo-optic phase shift. Both the fluctuations of the heat induced by the optical pumping and the thermodynamic fluctuations at room temperature are considered. On the one hand, the thermal response of the structure is investigated and a significant thermal lens effect caused by the pump is deduced. On the other hand, the power spectral density of the frequency noise is calculated in the presence of diffusion spatial anisotropy. The present model is in very good agreement with the phase noise measured for a dual-frequency VECSEL at 852 nm for application to metrology and the validity of the usual low-pass filter model is discussed
    corecore