358 research outputs found

    Chiral dynamics in form factors, spectral-function sum rules, meson-meson scattering and semilocal duality

    Full text link
    In this work, we perform the one-loop calculation of the scalar and pseudoscalar form factors in the framework of U(3) chiral perturbation theory with explicit tree level exchanges of resonances. The meson-meson scattering calculation from Ref.[1] is extended as well. The spectral functions of the nonet scalar-scalar (SS) and pseudoscalar-pseudoscalar (PP) correlators are constructed by using the corresponding form factors. After fitting the unknown parameters to the scattering data, we discuss the resonance content of the resulting scattering amplitudes. We also study spectral-function sum rules in the SS-SS, PP-PP and SS-PP sectors as well as semi-local duality from scattering. The former relate the scalar and pseudoscalar spectra between themselves while the latter mainly connects the scalar spectrum with the vector one. Finally we investigate these items as a function of Nc for Nc > 3. All these results pose strong constraints on the scalar dynamics and spectroscopy that are discussed. They are successfully fulfilled by our meson-meson scattering amplitudes and spectral functions.Comment: 45 pages, 17 figures and 4 tables. To match the published version in PRD: a new paragraph is added in the Introduction and two new references are include

    The Use of Dispersion Relations in the ππ\pi\pi and KKˉK\bar K Coupled-Channel System

    Get PDF
    Systematic and careful studies are made on the properties of the IJ=00 ππ\pi\pi and KKˉK\bar K coupled-channel system, using newly derived dispersion relations between the phase shifts and poles and cuts. The effects of nearby branch point singularities to the determination of the f0(980)f_0(980) resonance are estimated and and discussed.Comment: 22 pages with 5 eps figures. A numerical bug in previous version is fixed, discussions slightly expanded. No major conclusion is change

    Resonances from meson-meson scattering in U(3) CHPT

    Full text link
    In this work, the complete one loop calculation of meson-meson scattering amplitudes within U(3)\otimes U(3) chiral perturbation theory with explicit resonance states is carried out for the first time. Partial waves are unitarized from the perturbative calculation employing a non-perturbative approach based on the N/D method. Once experimental data are reproduced in a satisfactory way we then study the resonance properties, such as the pole positions, corresponding residues and their N_C behaviors. The resulting N_C dependence is the first one in the literature that takes into account the fact that the \eta_1 becomes the ninth Goldstone boson in the chiral limit for large N_C. Within this scheme the vector resonances studied, \rho(770), K^*(892) and \phi(1020), follow an N_C trajectory in agreement with their standard \bar{q}q interpretation. The scalars f_0(1370), a_0(1450) and K^*(1430) also have for large N_C a \bar{q}q pole position trajectory and all of them tend to a bare octet of scalar resonances around 1.4 GeV. The f_0(980) tends asymptotically to the bare pole position of a singlet scalar resonance around 1 GeV. The \sigma, \kappa and a_0(980) scalar resonances have a very different N_C behavior. The case of the \sigma resonance is analyzed with special detail.Comment: 50 pages, 15 figures, 1 table. Enlarged version with more detail comparisons with previous results in the literature. To match with accepted version for publicatio

    Amplitude analysis of reactions pi(-)p->etapi(-)p and pi(-)p->etapi(0)n on polarized target and the exotic 1-+ meson

    Full text link
    Recently several experimental groups analysed data on πpηπp\pi^- p \to \eta \pi^- p and πpηπ0n\pi^- p \to \eta \pi^0 n reactions with exotic 1+1^{-+} PP-wave and found a conflicting evidence for an exotic meson I=11+(1405)I=1 1^{-+} (1405). High statistics data on these reactions are presently analysed by BNL E852 Collaboration. All these analyses are based on the crucial assumption that the production amplitudes do not depend on nucleon spin. This assumption is in sharp conflict with the results of measurements of πpππ+n\pi^- p \to \pi^- \pi^+ n, π+nπ+πp\pi^+ n \to \pi^+ \pi^- p and K+nK+πpK^+ n \to K^+ \pi^- p on polarized targets at CERN which find a strong dependence of production amplitudes on nucleon spin. To ascertain the existence of exotic meson 1+(1405)1^{-+} (1405), it is necessary to perform a model-independent amplitude analysis of reactions πpηπp\pi^- p \to \eta \pi^- p and πpηπ0n\pi^- p \to \eta\pi^0 n. We demonstrate that measurements of these reactions on transversely polarized targets enable the required model independent amplitude analysis without the assumption that production amplitudes are independent on nucleon spin. We suggest that high statistics measurements of reactions πpηπp\pi^- p \to \eta\pi^- p and πpηπ0n\pi^- p \to\eta\pi^0 n be made on polarized targets at BNL and at Protvino IHEP, and that model-independent amplitude analyses of this polarized data be performed to advance hadron spectroscopy on the level of spin dependent production amplitudes.Comment: 23 page

    The ππ\pi \pi S-Wave in the 1 to 2 GeV Region from a ππ\pi \pi, KˉK\bar{K}K and ρρ\rho \rho(ωω\omega \omega) Coupled Channel Model

    Full text link
    A simple ππ\pi \pi, KˉK\bar{K}K, and ρρ\rho \rho(ωω\omega \omega) fully coupled channel model is proposed to predict the isoscalar S-wave phase shifts and inelasticities for ππ\pi \pi scattering in the 1.0 to 2.0 GeV region. The S-matrix is required to exhibit poles corresponding to the established isoscalar Jπ^{\pi} = 0+^+ resonances f0_0(975), f0_0(1400), and f0_0(1710). A dominant feature of the experimental ππ\pi \pi inelasticity is the clear opening of the KˉK\bar{K}K channel near 1 GeV, and the opening of another channel in the 1.4 - 1.5 GeV region. The success of our model in predicting this observed dramatic energy dependence indicates that the effect of multi-pion channels is adequately described by the ππ\pi \pi coupling to the KˉK\bar{K}K channel, the ρρ\rho \rho(4π\pi) and ωω\omega \omega(6π\pi) channels.Comment: 11 pages (Revtex 3.0), 4 figs. avail. upon request, RU946

    On the precision of chiral-dispersive calculations of ππ\pi\pi scattering

    Get PDF
    We calculate the combination 2a0(0)5a0(2)2a_0^{(0)}-5a_0^{(2)} (the Olsson sum rule) and the scattering lengths and effective ranges a1a_1, a2(I)a_2^{(I)} and b1b_1, b2(I)b_2^{(I)} dispersively (with the Froissart--Gribov representation) using, at low energy, the phase shifts for ππ\pi\pi scattering obtained by Colangelo, Gasser and Leutwyler (CGL) from the Roy equations and chiral perturbation theory, plus experiment and Regge behaviour at high energy, or directly, using the CGL parameters for aas and bbs. We find mismatch, both among the CGL phases themselves and with the results obtained from the pion form factor. This reaches the level of several (2 to 5) standard deviations, and is essentially independent of the details of the intermediate energy region (0.82E1.420.82\leq E\leq 1.42 GeV) and, in some cases, of the high energy behaviour assumed. We discuss possible reasons for this mismatch, in particular in connection with an alternate set of phase shifts.Comment: Version to appear in Phys. Rev. D. Graphs and sum rule added. Plain TeX fil

    A low-lying scalar meson nonet in a unitarized meson model

    Full text link
    A unitarized nonrelativistic meson model which is successful for the description of the heavy and light vector and pseudoscalar mesons yields, in its extension to the scalar mesons but for the same model parameters, a complete nonet below 1 GeV. In the unitarization scheme, real and virtual meson-meson decay channels are coupled to the quark-antiquark confinement channels. The flavor-dependent harmonic-oscillator confining potential itself has bound states epsilon(1.3 GeV), S(1.5 GeV), delta(1.3 GeV), kappa(1.4 GeV), similar to the results of other bound-state qqbar models. However, the full coupled-channel equations show poles at epsilon(0.5 GeV), S(0.99 GeV), delta(0.97 GeV), kappa(0.73 GeV). Not only can these pole positions be calculated in our model, but also cross sections and phase shifts in the meson-scattering channels, which are in reasonable agreement with the available data for pion-pion, eta-pion and Kaon-pion in S-wave scattering.Comment: A slightly revised version of Zeitschrift fuer Physik C30, 615 (1986

    Quark-gluonium content of the scalar-isoscalar states f_0(980), f_0(1300), f_0(1500), f_0(1750), f_0(1420 ^{+150}_{- 70}) from hadronic decays

    Get PDF
    On the basis of the decay couplings f_0 -> \pi\pi, K\bar K, \eta\eta, \eta\eta', which had been found before, in the study of analytical (IJ^{PC}=00^{++})-amplitude in the mass range 450-1900 MeV, we analyse the quark-gluonium content of resonances f_0(980), f_0(1300), f_0(1500), f_0(1750) and the broad state f_0(1420 ^{+ 150}_{-70}). The K-matrix technique used in the analysis makes it possible to evaluate the quark-gluonium content both for the states with switched-off decay channels (bare states, f^{bare}_0) and the real resonances. We observe significant change of the quark-gluonium composition in the evolution from bare states to real resonances, that is due to the mixing of states in the transitions f_0(m_1)-> real mesons-> f_0(m_2) responsible for the decay processes as well. For the f_0(980), the analysis confirmed the dominance of q\bar q component thus proving the n\bar n/s\bar s composition found in the study of the radiative decays. For the mesons f_0(1300), f_0(1500) and f_0(1750), the hadronic decays do not allow one to determine uniquely the n\bar n, s\bar s and gluonium components providing relative pecentage only. The analysis shows that the broad state f_0(1420 ^{+ 150}_{-70}) can mix with the flavour singlet q\bar q component only, that is consistent with gluonium origin of the broad resonance.Comment: 20 pages, LaTeX, 10 PostScript figures, epsfig.st

    Determination of hadronic partial widths for scalar-isoscalar resonances f0(980), f0(1300), f0(1500), f_0(1750) and the broad state f0(1530^{+90}_{-250})

    Get PDF
    In the article of V.V. Anisovich et al., Yad. Fiz. 63, 1489 (2000), the K-matrix solutions for the wave IJ^{PC}=00^{++} were obtained in the mass region 450 - 1900 MeV where four resonances f0(980), f0(1300), f0(1500), f0(1750) and the broad state f0(1530^{+90}_{-250}) are located. Based on these solutions, we determine partial widths for scalar-isoscalar states decaying into the channels pi-pi, K-anti K, eta-eta, eta-eta', pi-pi-pi-pi and corresponding decay couplings.Comment: Some typos were correcte

    Meson-meson scattering within one loop Chiral Perturbation Theory and its unitarization

    Get PDF
    We present the complete one-loop calculation of all the two meson scattering amplitudes within the framework of SU(3) Chiral Perturbation Theory, which includes pions, kaons and the eta. In addition, we have unitarized these amplitudes with the coupled channel Inverse Amplitude Method, which ensures simultaneously the good low energy properties of Chiral Perturbation Theory and unitarity. We show how this method provides a remarkable description of meson-meson scattering data up to 1.2 GeV including the scattering lengths and the generation of seven light resonances, which is consistent with previous determination of the chiral parameters. Particular attention is paid to discuss the differences and similarities of this work with previous analysis in the literature.Comment: 20 pages, 5 figures. Comments on sigma, kappa and eta', as well as some references added. Final version to appear in Phys.Rev.
    corecore