4,825 research outputs found
Alemtuzumab pre-conditioning with tacrolimus monotherapy in pediatric renal transplantation
We employed antibody pre-conditioning with alemtuzumab and posttransplant immunosuppression with low-dose tacrolimus monotherapy in 26 consecutive pediatric kidney transplant recipients between January 2004 and December 2005. Mean recipient age was 10.7 ± 5.8 years, 7.7% were undergoing retransplantation, and 3.8% were sensitized, with a PRA >20%. Mean donor age was 32.8 ± 9.2 years. Living donors were utilized in 65% of the transplants. Mean cold ischemia time was 27.6 ± 6.4 h. The mean number of HLA mismatches was 3.3 ± 1.3. Mean follow-up was 25 ± 8 months. One and 2 year patient survival was 100% and 96%. One and 2 year graft survival was 96% and 88%. Mean serum creatinine was 1.1 ± 0.6 mg/dL, and calculated creatinine clearance was 82.3 ± 29.4 mL/min/1.73 m 2. The incidence of pre-weaning acute rejection was 11.5%; the incidence of delayed graft function was 7.7%. Eighteen (69%) of the children were tapered to spaced tacrolimus monotherapy, 10.5 ± 2.2 months after transplantation. The incidence of CMV, PTLD and BK virus was 0%; the incidence of posttransplant diabetes was 7.7%. Although more follow-up is clearly needed, antibody pre-conditioning with alemtuzumab and tacrolimus monotherapy may be a safe and effective regimen in pediatric renal transplantation. © 2007 The Authors
The Shear TEsting Programme 1: Weak lensing analysis of simulated ground-based observations
The Shear TEsting Programme, STEP, is a collaborative project to improve the accuracy and reliability of all weak lensing measurements in preparation for the next generation of wide-field surveys. In this first STEP paper we present the results of a blind analysis of simulated ground-based observations of relatively simple galaxy morphologies. The most successful methods are shown to achieve percent level accuracy. From the cosmic shear pipelines that have been used to constrain cosmology, we find weak lensing shear measured to an accuracy that is within the statistical errors of current weak lensing analyses, with shear measurements accurate to better than 7%. The dominant source of measurement error is shown to arise from calibration uncertainties where the measured shear is over or under-estimated by a constant multiplicative factor. This is of concern as calibration errors cannot be detected through standard diagnostic tests. The measured calibration errors appear to result from stellar contamination, false object detection, the shear measurement method itself, selection bias and/or the use of biased weights. Additive systematics (false detections of shear) resulting from residual point-spread function anisotropy are, in most cases, reduced to below an equivalent shear of 0.001, an order of magnitude below cosmic shear distortions on the scales probed by current surveys. Our results provide a snapshot view of the accuracy of current ground-based weak lensing methods and a benchmark upon which we can improve. To this end we provide descriptions of each method tested and include details of the eight different implementations of the commonly used Kaiser, Squires and Broadhurst (1995) method (KSB+) to aid the improvement of future KSB+ analyses
Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae
Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity
The complete mitochondrial genome of the foodborne parasitic pathogen Cyclospora cayetanensis
Cyclospora cayetanensis is a human-specific coccidian parasite responsible for several food and water-related outbreaks around the world, including the most recent ones involving over 900 persons in 2013 and 2014 outbreaks in the USA. Multicopy organellar DNA such as mitochondrion genomes have been particularly informative for detection and genetic traceback analysis in other parasites. We sequenced the C. cayetanensis genomic DNA obtained from stool samples from patients infected with Cyclospora in Nepal using the Illumina MiSeq platform. By bioinformatically filtering out the metagenomic reads of non-coccidian origin sequences and concentrating the reads by targeted alignment, we were able to obtain contigs containing Eimeria-like mitochondrial, apicoplastic and some chromosomal genomic fragments. A mitochondrial genomic sequence was assembled and confirmed by cloning and sequencing targeted PCR products amplified from Cyclospora DNA using primers based on our draft assembly sequence. The results show that the C. cayetanensis mitochondrion genome is 6274 bp in length, with 33% GC content, and likely exists in concatemeric arrays as in Eimeria mitochondrial genomes. Phylogenetic analysis of the C. cayetanensis mitochondrial genome places this organism in a tight cluster with Eimeria species. The mitochondrial genome of C. cayetanensis contains three protein coding genes, cytochrome (cytb), cytochrome C oxidase subunit 1 (cox1), and cytochrome C oxidase subunit 3 (cox3), in addition to 14 large subunit (LSU) and nine small subunit (SSU) fragmented rRNA genes
Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females
Neuromuscular performance capabilities, including those measured by evoked responses, may be adversely affected by fatigue; however, the capability of the neuromuscular system to initiate muscle force rapidly under these circumstances is yet to be established. Sex-differences in the acute responses of neuromuscular performance to exercise stress may be linked to evidence that females are much more vulnerable to ACL injury than males. Optimal functioning of the knee flexors is paramount to the dynamic stabilisation of the knee joint, therefore the aim of this investigation was to examine the effects of acute maximal intensity fatiguing exercise on the voluntary and magnetically-evoked electromechanical delay in the knee flexors of males and females. Knee flexor volitional and magnetically-evoked neuromuscular performance was assessed in seven male and nine females prior to and immediately after: (i) an intervention condition comprising a fatigue trial of 30-seconds maximal static exercise of the knee flexors, (ii) a control condition consisting of no exercise. The results showed that the fatigue intervention was associated with a substantive reduction in volitional peak force (PFV) that was greater in males compared to females (15.0%, 10.2%, respectively, p < 0.01) and impairment to volitional electromechanical delay (EMDV) in females exclusively (19.3%, p < 0.05). Similar improvements in magnetically-evoked electromechanical delay in males and females following fatigue (21%, p < 0.001), however, may suggest a vital facilitatory mechanism to overcome the effects of impaired voluntary capabilities, and a faster neuromuscular response that can be deployed during critical times to protect the joint system
Modelling the public health impact of male circumcision for HIV prevention in high prevalence areas in Africa
Background: Recent clinical trials in Africa, in combination with several observational epidemiological studies, have provided evidence that male circumcision can reduce HIV female-to-male transmission risk by 60% or more. However, the public health impact of large-scale male circumcision programs for HIV prevention is unclear. Methods: Two mathematical models were examined to explore this issue: a random mixing model and a compartmental model that distinguishes risk groups associated with sex work. In the compartmental model, two scenarios were developed, one calculating HIV transmission and prevalence in a context similar to the country of Botswana, and one similar to Nyanza Province, in western Kenya. Results: In both models, male circumcision programs resulted in large and sustained declines in HIV prevalence over time among both men and women. Men benefited somewhat more than women, but prevalence among women was also reduced substantially. With 80% male circumcision uptake, the reductions in prevalence ranged from 45% to 67% in the two "countries", and with 50% uptake, from 25% to 41%. It would take over a decade for the intervention to reach its full effect. Conclusion: Large-scale uptake of male circumcision services in African countries with high HIV prevalence, and where male circumcision is not now routinely practised, could lead to substantial reductions in HIV transmission and prevalence over time among both men and women
Pneumococcal carriage in sub-Saharan Africa--a systematic review.
BACKGROUND: Pneumococcal epidemiology varies geographically and few data are available from the African continent. We assess pneumococcal carriage from studies conducted in sub-Saharan Africa (sSA) before and after the pneumococcal conjugate vaccine (PCV) era. METHODS: A search for pneumococcal carriage studies published before 2012 was conducted to describe carriage in sSA. The review also describes pneumococcal serotypes and assesses the impact of vaccination on carriage in this region. RESULTS: Fifty-seven studies were included in this review with the majority (40.3%) from South Africa. There was considerable variability in the prevalence of carriage between studies (I-squared statistic = 99%). Carriage was higher in children and decreased with increasing age, 63.2% (95% CI: 55.6-70.8) in children less than 5 years, 42.6% (95% CI: 29.9-55.4) in children 5-15 years and 28.0% (95% CI: 19.0-37.0) in adults older than 15 years. There was no difference in the prevalence of carriage between males and females in 9/11 studies. Serotypes 19F, 6B, 6A, 14 and 23F were the five most common isolates. A meta-analysis of four randomized trials of PCV vaccination in children aged 9-24 months showed that carriage of vaccine type (VT) serotypes decreased with PCV vaccination; however, overall carriage remained the same because of a concomitant increase in non-vaccine type (NVT) serotypes. CONCLUSION: Pneumococcal carriage is generally high in the African continent, particularly in young children. The five most common serotypes in sSA are among the top seven serotypes that cause invasive pneumococcal disease in children globally. These serotypes are covered by the two PCVs recommended for routine childhood immunization by the WHO. The distribution of serotypes found in the nasopharynx is altered by PCV vaccination
Modulation of emotional appraisal by false physiological feedback during fMRI
BACKGROUND
James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined.
METHODOLOGY/PRINCIPAL FINDINGS
We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level.
CONCLUSIONS/SIGNIFICANCE
Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state
Forum: Enabling HIV self-testing in South Africa
In a South African context, we consider the implications of the United States Food and Drug Administration’s recent approval of the OraQuick HIV self-testing kit. We argue that current law and policy inhibit the roll-out of accurate and well-regulated self-testing kits, and create a loophole for sale in supermarkets, but not pharmacies
Modulation of emotional appraisal by false physiological feedback during fMRI
BACKGROUND
James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined.
METHODOLOGY/PRINCIPAL FINDINGS
We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level.
CONCLUSIONS/SIGNIFICANCE
Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state
- …
