2,170 research outputs found

    Dengue transmission risk in a changing climate: Bangladesh is likely to experience a longer dengue fever season in the future

    Full text link
    Our changing climate is already affecting the transmission of dengue fever, the fastest growing vector-borne viral disease in the world. This issue presents a significant public health concern for some nations, such as Bangladesh, which already experience regular seasonal outbreaks of dengue fever under present day conditions. To provide guidance for proactive public health planning to potentially mitigate the severity of future outbreaks, we explored the impact of climate change on dengue infections by calculating the change in vectorial capacity (VC) of Aedes aegypti mosquitoes at a seasonal level for all regions in Bangladesh under two scenarios for future atmospheric greenhouse gas concentrations. For each of the four climate models used, and for both scenarios, our analysis revealed that the annual VC remains at a level that would enable potential dengue epidemic transmission in all regions in Bangladesh. We found a slight decline in VC in half of the regions examined during the last two decades of the 21st century for the lower-concentration scenario, with a pronounced decline in VC in all geographic regions beginning in 2060 for the higher-concentration scenario. The likely reason is that in many regions, warming will lead to sub-optimal mosquito breeding temperatures. However, seasonal differences in VC will dissipate as the climate warms, to the point that there is almost no observable seasonality for the higher-concentration scenario during the last two decades of this century. This finding suggests the dengue transmission season could eventually extend to all-year-round transmission, with outbreaks occurring at any time. Consequently, disease surveillance and control activities would need to be geographically and temporally adapted to mitigate dengue epidemic risk in response to climate change

    Role of masks, testing and contact tracing in preventing COVID-19 resurgences: A case study from New South Wales, Australia

    Full text link
    Objectives The early stages of the COVID-19 pandemic illustrated that SARS-CoV-2, the virus that causes the disease, has the potential to spread exponentially. Therefore, as long as a substantial proportion of the population remains susceptible to infection, the potential for new epidemic waves persists even in settings with low numbers of active COVID-19 infections, unless sufficient countermeasures are in place. We aim to quantify vulnerability to resurgences in COVID-19 transmission under variations in the levels of testing, tracing and mask usage. Setting The Australian state of New South Wales (NSW), a setting with prolonged low transmission, high mobility, non-universal mask usage and a well-functioning test-and-trace system. Participants None (simulation study). Results We find that the relative impact of masks is greatest when testing and tracing rates are lower and vice versa. Scenarios with very high testing rates (90% of people with symptoms, plus 90% of people with a known history of contact with a confirmed case) were estimated to lead to a robustly controlled epidemic. However, across comparable levels of mask uptake and contact tracing, the number of infections over this period was projected to be 2-3 times higher if the testing rate was 80% instead of 90%, 8-12 times higher if the testing rate was 65% or 30-50 times higher with a 50% testing rate. In reality, NSW diagnosed 254 locally acquired cases over this period, an outcome that had a moderate probability in the model (10%-18%) assuming low mask uptake (0%-25%), even in the presence of extremely high testing (90%) and near-perfect community contact tracing (75%-100%), and a considerably higher probability if testing or tracing were at lower levels. Conclusions Our work suggests that testing, tracing and masks can all be effective means of controlling transmission. A multifaceted strategy that combines all three, alongside continued hygiene and distancing protocols, is likely to be the most robust means of controlling transmission of SARS-CoV-2

    In the interests of time: Improving HIV allocative efficiency modelling via optimal time-varying allocations

    Full text link
    Introduction: International investment in the response to HIV and AIDS has plateaued and its future level is uncertain. With many countries committed to ending the epidemic, it is essential to allocate available resources efficiently over different response periods to maximize impact. The objective of this study is to propose a technique to determine the optimal allocation of funds over time across a set of HIV programmes to achieve desirable health outcomes. Methods: We developed a technique to determine the optimal time-varying allocation of funds (1) when the future annual HIV budget is pre-defined and (2) when the total budget over a period is pre-defined, but the year-on-year budget is to be optimally determined. We use this methodology with Optima, an HIV transmission model that uses non-linear relationships between programme spending and associated programmatic outcomes to quantify the expected epidemiological impact of spending.We apply these methods to data collected from Zambia to determine the optimal distribution of resources to fund the right programmes, for the right people, at the right time. Results and discussion: Considering realistic implementation and ethical constraints, we estimate that the optimal time-varying redistribution of the 2014 Zambian HIV budget between 2015 and 2025 will lead to a 7.6% (7.3% to 7.8%) decrease in cumulative new HIV infections compared with a baseline scenario where programme allocations remain at 2014 levels. This compares to a 5.1% (4.6% to 5.6%) reduction in new infections using an optimal allocation with constant programme spending that recommends unrealistic programmatic changes. Contrasting priorities for programme funding arise when assessing outcomes for a five-year funding period over 5-, 10- and 20-year time horizons. Conclusions: Countries increasingly face the need to do more with the resources available. The methodology presented here can aid decision-makers in planning as to when to expand or contract programmes and to which coverage levels to maximize impact

    The biological origin of linguistic diversity

    Get PDF
    In contrast with animal communication systems, diversity is characteristic of almost every aspect of human language. Languages variously employ tones, clicks, or manual signs to signal differences in meaning; some languages lack the noun-verb distinction (e.g., Straits Salish), whereas others have a proliferation of fine-grained syntactic categories (e.g., Tzeltal); and some languages do without morphology (e.g., Mandarin), while others pack a whole sentence into a single word (e.g., Cayuga). A challenge for evolutionary biology is to reconcile the diversity of languages with the high degree of biological uniformity of their speakers. Here, we model processes of language change and geographical dispersion and find a consistent pressure for flexible learning, irrespective of the language being spoken. This pressure arises because flexible learners can best cope with the observed high rates of linguistic change associated with divergent cultural evolution following human migration. Thus, rather than genetic adaptations for specific aspects of language, such as recursion, the coevolution of genes and fast-changing linguistic structure provides the biological basis for linguistic diversity. Only biological adaptations for flexible learning combined with cultural evolution can explain how each child has the potential to learn any human language

    A Gonococcal Vaccine Has the Potential to Rapidly Reduce the Incidence of Neisseria gonorrhoeae Infection among Urban Men Who Have Sex with Men

    Get PDF
    Background: A gonococcal vaccine is urgently needed due to increasing gonorrhea incidence and emerging multidrug-resistant gonococcal strains worldwide. Men who have sex with men (MSM) have among the highest incidences of gonorrhea and may be a key target population for vaccination when available. Methods: An individual-based, anatomical site-specific mathematical model was used to simulate Neisseria gonorrhoeae transmission in a population of 10000 MSM. The impact of vaccination on gonorrhea prevalence was assessed. Results: With a gonococcal vaccine of 100% or 50% protective efficacy, gonorrhea prevalence could be reduced by 94% or 62%, respectively, within 2 years if 30% of MSM are vaccinated on presentation for sexually transmitted infection (STI) testing. Elimination of gonorrhea is possible within 8 years with vaccines of≥50% efficacy lasting 2 years, providing a booster vaccination is available every 3 years on average. A vaccine's impact may be reduced if it is not effective at all anatomical sites. Conclusions: Our study indicates that with a vaccine of modest efficacy and an immunization strategy that targets MSM presenting for STI screening, the prevalence of gonorrhea in this population could be rapidly and substantially reduced

    Understanding COVID-19 dynamics and the effects of interventions in the Philippines: A mathematical modelling study

    Get PDF
    Background: COVID-19 initially caused less severe outbreaks in many low- and middle-income countries (LMIC) compared with many high-income countries, possibly because of differing demographics, socioeconomics, surveillance, and policy responses. Here, we investigate the role of multiple factors on COVID-19 dynamics in the Philippines, a LMIC that has had a relatively severe COVID-19 outbreak. Methods: We applied an age-structured compartmental model that incorporated time-varying mobility, testing, and personal protective behaviors (through a “Minimum Health Standards” policy, MHS) to represent the first wave of the Philippines COVID-19 epidemic nationally and for three highly affected regions (Calabarzon, Central Visayas, and the National Capital Region). We estimated effects of control measures, key epidemiological parameters, and interventions. Findings: Population age structure, contact rates, mobility, testing, and MHS were sufficient to explain the Philippines epidemic based on the good fit between modelled and reported cases, hospitalisations, and deaths. The model indicated that MHS reduced the probability of transmission per contact by 13-27%. The February 2021 case detection rate was estimated at ~8%, population recovered at ~9%, and scenario projections indicated high sensitivity to MHS adherence. Interpretation: COVID-19 dynamics in the Philippines are driven by age, contact structure, mobility, and MHS adherence. Continued compliance with low-cost MHS should help the Philippines control the epidemic until vaccines are widely distributed, but disease resurgence may be occurring due to a combination of low population immunity and detection rates and new variants of concern

    Near-Field Analysis of Rectangular Waveguide Probes Used for Imaging

    Get PDF
    Near-field microwave imaging of composite structures has received considerable attention recently. The success achieved on the experimental level motivated the development of a theoretical model to describe the high quality images obtained using near-field microwave imaging [1–4]. This theoretical model will also help in building an intuitive understanding of the behavior of the fields inside dielectric materials in the near-field of an open-ended rectangular waveguide probe. A near-field microwave image is the result of several factors such as probe type (example rectangular waveguide, circular waveguide or coaxial line), field properties (i.e. main lobe, sidelobes and half power beam width, etc.), geometrical and physical properties of both the defect and the material under inspection. Thus, in order to characterize a defect, the effect of all non-defect factors needs to be taken out of an image. One of the dominant non-defect factors which influences an image significantly is the radiator field properties. Thus, it is essential to formulate the properties of the fields radiating out of an open-ended rectangular waveguide in its near-field. This knowledge will aid in formulating the forward problem when imaging a defect, and will be used to solve the inverse problem for obtaining defect properties. In this paper fields radiating out of an open-ended rectangular waveguide, into an infinite half-space of a dielectric material, are calculated and used to explain some of the features observed in experimental near-field microwave images

    Chromatophore Activity during Natural Pattern Expression by the Squid Sepioteuthis lessoniana: Contributions of Miniature Oscillation

    Get PDF
    Squid can rapidly change the chromatic patterns on their body. The patterns are created by the expansion and retraction of chromatophores. The chromatophore consists of a central pigment-containing cell surrounded by radial muscles that are controlled by motor neurons located in the central nervous system (CNS). In this study we used semi-intact squid (Sepioteuthis lessoniana) displaying centrally controlled natural patterns to analyze spatial and temporal activities of chromatophores located on the dorsal mantle skin. We found that chromatophores oscillated with miniature expansions/retractions at various frequencies, even when the chromatic patterns appear macroscopically stable. The frequencies of this miniature oscillation differed between “feature” and “background” areas of chromatic patterns. Higher frequencies occurred in feature areas, whereas lower frequencies were detected in background areas. We also observed synchronization of the oscillation during chromatic pattern expression. The expansion size of chromatophores oscillating at high frequency correlated with the number of synchronized chromatophores but not the oscillation frequency. Miniature oscillations were not observed in denervated chromatophores. These results suggest that miniature oscillations of chromatophores are driven by motor neuronal activities in the CNS and that frequency and synchrony of this oscillation determine the chromatic pattern and the expansion size, respectively
    corecore