33 research outputs found
MCL-1 is essential for survival but dispensable for metabolic fitness of FOXP3+ regulatory T cells
FOXP3+ regulatory T (Treg) cells are essential for maintaining immunological tolerance. Given their importance in immune-related diseases, cancer and obesity, there is increasing interest in targeting the Treg cell compartment therapeutically. New pharmacological inhibitors that specifically target the prosurvival protein MCL-1 may provide this opportunity, as Treg cells are particularly reliant upon this protein. However, there are two distinct isoforms of MCL-1; one located at the outer mitochondrial membrane (OMM) that is required to antagonize apoptosis, and another at the inner mitochondrial membrane (IMM) that is reported to maintain IMM structure and metabolism via ATP production during oxidative phosphorylation. We set out to elucidate the relative importance of these distinct biological functions of MCL-1 in Treg cells to assess whether MCL-1 inhibition might impact upon the metabolism of cells able to resist apoptosis. Conditional deletion of Mcl1 in FOXP3+ Treg cells resulted in a lethal multiorgan autoimmunity due to the depletion of the Treg cell compartment. This striking phenotype was completely rescued by concomitant deletion of the apoptotic effector proteins BAK and BAX, indicating that apoptosis plays a pivotal role in the homeostasis of Treg cells. Notably, MCL-1-deficient Treg cells rescued from apoptosis displayed normal metabolic capacity. Moreover, pharmacological inhibition of MCL-1 in Treg cells resistant to apoptosis did not perturb their metabolic function. We conclude that Treg cells require MCL-1 only to antagonize apoptosis and not for metabolism. Therefore, MCL-1 inhibition could be used to manipulate Treg cell survival for clinical benefit without affecting the metabolic fitness of cells resisting apoptosis
Dual roles for LUBAC signaling in thymic epithelial cell development and survival
Thymic epithelial cells (TECs) form a unique microenvironment that orchestrates T cell differentiation and immunological tolerance. Despite the importance of TECs for adaptive immunity, there is an incomplete understanding of the signalling networks that support their differentiation and survival. We report that the linear ubiquitin chain assembly complex (LUBAC) is essential for medullary TEC (mTEC) differentiation, cortical TEC survival and prevention of premature thymic atrophy. TEC-specific loss of LUBAC proteins, HOIL-1 or HOIP, severely impaired expansion of the thymic medulla and AIRE-expressing cells. Furthermore, HOIL-1-deficiency caused early thymic atrophy due to Caspase-8/MLKL-dependent apoptosis/necroptosis of cortical TECs. By contrast, deficiency in the LUBAC component, SHARPIN, caused relatively mild defects only in mTECs. These distinct roles for LUBAC components in TECs correlate with their function in linear ubiquitination, NFκB activation and cell survival. Thus, our findings reveal dual roles for LUBAC signaling in TEC differentiation and survival
Early immune pressure initiated by tissue-resident memory T cells sculpts tumor evolution in non-small cell lung cancer
Tissue-resident memory T (TRM) cells provide immune defense against local infection and can inhibit cancer progression. However, it is unclear to what extent chronic inflammation impacts TRM activation and whether TRM cells existing in tissues before tumor onset influence cancer evolution in humans. We performed deep profiling of healthy lungs and lung cancers in never-smokers (NSs) and ever-smokers (ESs), finding evidence of enhanced immunosurveillance by cells with a TRM-like phenotype in ES lungs. In preclinical models, tumor-specific or bystander TRM-like cells present prior to tumor onset boosted immune cell recruitment, causing tumor immune evasion through loss of MHC class I protein expression and resistance to immune checkpoint inhibitors. In humans, only tumors arising in ES patients underwent clonal immune evasion, unrelated to tobacco-associated mutagenic signatures or oncogenic drivers. These data demonstrate that enhanced TRM-like activity prior to tumor development shapes the evolution of tumor immunogenicity and can impact immunotherapy outcomes
Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma.
Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies
RelB-Dependent Stromal Cells Promote T-Cell Leukemogenesis
BACKGROUND: The Rel/NF-kappaB transcription factors are often activated in solid or hematological malignancies. In most cases, NF-kappaB activation is found in malignant cells and results from activation of the canonical NF-kappaB pathway, leading to RelA and/or c-Rel activation. Recently, NF-kappaB activity in inflammatory cells infiltrating solid tumors has been shown to contribute to solid tumor initiation and progression. Noncanonical NF-kappaB activation, which leads to RelB activation, has also been reported in breast carcinoma, prostate cancer, and lymphoid leukemia. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a novel role for RelB in stromal cells that promote T-cell leukemogenesis. RelB deficiency delayed leukemia onset in the TEL-JAK2 transgenic mouse model of human T acute lymphoblastic leukemia. Bone marrow chimeric mouse experiments showed that RelB is not required in the hematopoietic compartment. In contrast, RelB plays a role in radio-resistant stromal cells to accelerate leukemia onset and increase disease severity. CONCLUSIONS/SIGNIFICANCE: The present results are the first to uncover a role for RelB in the crosstalk between non-hematopoietic stromal cells and leukemic cells. Thus, besides its previously reported role intrinsic to specific cancer cells, the noncanonical NF-kappaB pathway may also play a pro-oncogenic role in cancer microenvironmental cells
Single-Cell RNA Sequencing Approaches for Tracing T Cell Development
T cell development occurs in the thymus, where uncommitted progenitors are directed into a range of sublineages with distinct functions. The goal is to generate a TCR repertoire diverse enough to recognize potential pathogens while remaining tolerant of self. Decades of intensive research have characterized the transcriptional programs controlling critical differentiation checkpoints at the population level. However, greater precision regarding how and when these programs orchestrate differentiation at the single-cell level is required. Single-cell RNA sequencing approaches are now being brought to bear on this question, to track the identity of cells and analyze their gene expression programs at a resolution not previously possible. In this review, we discuss recent advances in the application of these technologies that have the potential to yield unprecedented insight to T cell development
Genetic lesions in T-cell tolerance and thresholds for autoimmunity
The cause of common organ-specific autoimmune diseases is poorly understood because of genetic and cellular complexity in humans and animals. Recent advances in the understanding of the mechanisms of the defects underlying autoimmune disease in autoimmune polyendocrinopathy syndrome type 1 and non-obese diabetic mice suggest that failures in central tolerance play a key role in predisposition towards organ-specific autoimmunity. The lessons from such rare monogenic autoimmune disorders and well-characterized polygenic traits demonstrate how subtle quantitative trait loci can result in large changes in the susceptibility to autoimmunity. These data allow us to propose a model relating efficiency of thymic deletion to T-cell tolerance and susceptibility to autoimmunity.status: publishe
Programmed death receptor 1 (PD-1) ligand Fc fusion proteins reduce T-cell proliferation <i>in vitro</i> independently of PD-1
Programmed death receptor 1 (PD-1) is an inhibitory receptor on T cells shown to restrain T-cell proliferation. PD-1 immune checkpoint blockade has emerged as a highly promising approach in cancer treatment. Much of our understanding of the function of PD-1 is derived from in vitro T-cell activation assays. Here we set out to further investigate how T cells integrate inhibitory signals such as PD-1 in vitro using the PD-1 agonist, PD-1 ligand 1 (PD-L1) fusion protein (PD-L1.Fc), coimmobilized alongside anti-CD3 agonist monoclonal antibody (mAb) on plates to deliver PD-1 signals to wild-type and PD-1-/- CD8+ T cells. Surprisingly, we found that the PD-L1.Fc fusion protein inhibited T-cell proliferation independently of PD-1. This PD-L1.Fc inhibition was observed in the presence and absence of CD28 and interleukin-2 signaling. Binding of PD-L1.Fc was restricted to PD-1-expressing T cells and thus inhibition was not mediated by the interaction of PD-L1.Fc with CD80 or other yet unknown binding partners. Furthermore, a similar PD-1-independent reduction of T-cell proliferation was observed with plate-bound PD-L2.Fc. Hence, our results suggest that the coimmobilization of PD-1 ligand fusion proteins with anti-CD3 mAb leads to a reduction of T-cell engagement with plate-bound anti-CD3 mAb. This study demonstrates a nonspecific mechanism of T-cell inhibition when PD-L1.Fc or PD-L2.Fc fusion proteins are delivered in a plate-bound coimmobilization assay and highlights the importance of careful optimization of assay systems and reagents when interpreting their influence on T-cell proliferation
Removing unwanted variation with CytofRUV to integrate multiple CyTOF datasets
Mass cytometry (CyTOF) is a technology that has revolutionised single-cell biology. By detecting over 40 proteins on millions of single cells, CyTOF allows the characterisation of cell subpopulations in unprecedented detail. However, most CyTOF studies require the integration of data from multiple CyTOF batches usually acquired on different days and possibly at different sites. To date, the integration of CyTOF datasets remains a challenge due to technical differences arising in multiple batches. To overcome this limitation, we developed an approach called CytofRUV for analysing multiple CyTOF batches, which includes an R-Shiny application with diagnostic plots. CytofRUV can correct for batch effects and integrate data from large numbers of patients and conditions across batches, to confidently compare cellular changes and correlate these with clinically relevant outcomes