1,052 research outputs found

    Severe malaria: what's new on the pathogenesis front?

    Get PDF
    Plasmodium falciparum causes the most severe and fatal form of malaria in humans with over half a million deaths each year. Cerebral malaria (CM), a complex neurological syndrome of severe falciparum malaria, is often fatal and represents a major public health burden. Despite vigorous efforts, the pathophysiology of CM remains to be elucidated, thereby hindering the development of adjunctive therapies. In recent years, multidisciplinary and collaborative approaches have led to groundbreaking progress both in the laboratory and in the field. Here we review the latest breakthroughs in severe malaria pathogenesis, with a specific focus on new pathogenetic mechanisms leading to CM. The most recent findings point towards specific parasite phenotypes targeting brain microvasculature, endothelial dysfunction and subsequent oedema-induced brain swelling

    MicroRNAs and Malaria - A Dynamic Interaction Still Incompletely Understood.

    Full text link
    Malaria is a mosquito-borne infectious disease caused by parasitic protozoa of the genus Plasmodium. It remains a major problem affecting humans today, especially children. However, the pathogenesis of malaria, especially severe malaria, remains incompletely understood, hindering our ability to treat this disease. Of recent interest is the role that small, non-coding RNAs play in the progression, pathogenesis of, and resistance to, malaria. Independent studies have now revealed the presence of microRNA (miRNA) in the malaria parasite, vector, and host, though these studies are relatively few. Here, we review these studies, focusing on the roles specific miRNA have in the disease, and how they may be harnessed for therapeutic purposes

    Experimental Models of Microvascular Immunopathology: The Example of Cerebral Malaria.

    Full text link
    Human cerebral malaria is a severe and often lethal complication of Plasmodium falciparum infection. Complex host and parasite interactions should the precise mechanisms involved in the onset of this neuropathology. Adhesion of parasitised red blood cells and host cells to endothelial cells lead to profound endothelial alterations that trigger immunopathological changes, varying degrees of brain oedema and can compromise cerebral blood flow, cause cranial nerve dysfunction and hypoxia. Study of the cerebral pathology in human patients is limited to clinical and genetic field studies in endemic areas, thus cerebral malaria (CM) research relies heavily on experimental models. The availability of malaria models allows study from the inoculation of Plasmodium to the onset of disease and permit invasive experiments. Here, we discuss some aspects of our current understanding of CM, the experimental models available and some important recent findings extrapolated from these models

    Cellular communication via microparticles: Role in transfer of multidrug resistance in cancer

    Full text link
    Multidrug resistance (MDR) continues to be a major impediment to the successful treatment of cancer. The two efflux transporters, P-glycoprotein (P-gp) and MRP1 are major contributors to cancer MDR clinically. The upregulation of P-gp leading to MDR was initially understood to occur via pre- and post-transcriptional mechanisms only. However, we demonstrated that microparticles mediate the intercellular exchange and trafficking of bioactive material, including functional P-gp and selected modulatory miRNAs. This exchange of P-gp leads to the dissemination of MDR within a cancer cell population. These findings have significant implications in understanding the cellular basis governing the intercellular acquisition of deleterious traits in cancers, serving to substantially advance our understanding of the molecular basis of the emergence of MDR in cancer clinically. © 2014 Future Medicine Ltd

    Inhibition of endothelial activation: A new way to treat cerebral malaria?

    Full text link
    Background: Malaria is still a major public health problem, partly because the pathogenesis of its major complication, cerebral malaria (CM), remains incompletely understood. However tumor necrosis factor (TNF) is thought to play a key role in the development of this neurological syndrome, as well as lymphotoxin α (LT). Methods and Findings: Using an in vitro model of CM based on human brain-derived endothelial cells (HBEC-5i), we demonstrate the anti-inflammatory effect of LMP-420, a 2-NH2-6-Cl-9-[(5- dihydroxyboryl)-pentyl] purine that is a transcriptional inhibitor of TNF. When added before or concomitantly to TNF, LMP-420 inhibits endothelial cell (EC) activation, i.e., the up-regulation of both ICAM-1 and VCAM-1 on HBEC-5i surfaces. Subsequently, LMP-420 abolishes the cytoadherence of ICAM-1-specific Plasmodium falciparum-parasitized red blood cells on these EC. Identical but weaker effects are observed when LMP-420 is added with LT. LMP-420 also causes a dramatic reduction of HBEC-5i vesiculation induced by TNF or LT stimulation, as assessed by microparticle release. Conclusion: These data provide evidence for a strong in vitro anti-inflammatory effect of LMP-420 and suggest that targeting host cell pathogenic mechanisms might provide a new therapeutic approach to improving the outcome of CM patients. © 2005 Wassmer et al

    Potential Efficacy of Citicoline as Adjunct Therapy in Treatment of Cerebral Malaria

    Full text link
    Cerebral malaria (CM) is characterized by a dysregulated immune response that results in endothelial membrane destabilization and increased microparticle (MP) production. Citicoline (CTC) is a membrane stabilizer used for the treatment of neurological disorders. We evaluated the efficacy of CTC as adjunct therapy to aid recovery from experimental CM. We show that CTC reduces MP production in vitro; in combination with artesunate in vivo, confers partial protection against CM; and prolongs survival. © 2014, American Society for Microbiology. All Rights Reserved

    Endothelial Cells Potentiate Interferon-γ Production in a Novel Tripartite Culture Model of Human Cerebral Malaria

    Get PDF
    We have established a novel in vitro co-culture system of human brain endothelial cells (HBEC), Plasmodium falciparum parasitised red blood cells (iRBC) and peripheral blood mononuclear cells (PBMC), in order to simulate the chief pathophysiological lesion in cerebral malaria (CM). This approach has revealed a previously unsuspected pro-inflammatory role of the endothelial cell through potentiating the production of interferon (IFN)-γ by PBMC and concurrent reduction of interleukin (IL)-10. The IFN-γ increased the expression of CXCL10 and intercellular adhesion molecule (ICAM)-1, both of which have been shown to be crucial in the pathogenesis of CM. There was a shift in the ratio of IL-10:IFN-γ protein from >1 to <1 in the presence of HBEC, associated with the pro-inflammatory process in this model. For this to occur, a direct contact between PBMC and HBEC, but not PBMC and iRBC, was necessary. These results support HBEC playing an active role in the pathogenesis of CM. Thus, if these findings reflect the pathogenesis of CM, inhibition of HBEC and PBMC interactions might reduce the occurrence, or improve the prognosis, of the condition. © 2013 Khaw et al

    Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells

    Full text link
    Platelet-derived microparticles (PMP) bind and modify the phenotype of many cell types including endothelial cells. Recently, we showed that PMP were internalized by human brain endothelial cells (HBEC). Here we intend to better characterize the internalization mechanisms of PMP and their intracellular fate. Confocal microscopy analysis of PKH67-labelled PMP distribution in HBEC showed PMP in early endosome antigen 1 positive endosomes and in LysoTracker-labelled lysosomes, confirming a role for endocytosis in PMP internalization. No fusion of calcein-loaded PMP with HBEC membranes was observed. Quantification of PMP endocytosis using flow cytometry revealed that it was partially inhibited by trypsin digestion of PMP surface proteins and by extracellular Ca2+ chelation by EDTA, suggesting a partial role for receptor-mediated endocytosis in PMP uptake. This endocytosis was independent of endothelial receptors such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and was not increased by tumour necrosis factor stimulation of HBEC. Platelet-derived microparticle internalization was dramatically increased in the presence of decomplemented serum, suggesting a role for PMP opsonin-dependent phagocytosis. Platelet-derived microparticle uptake was greatly diminished by treatment of HBEC with cytochalasin D, an inhibitor of microfilament formation required for both phagocytosis and macropinocytosis, with methyl-β-cyclodextrin that depletes membrane cholesterol needed for macropinocytosis and with amiloride that inhibits the Na+/H+ exchanger involved in macropinocytosis. In conclusion, PMP are taken up by active endocytosis in HBEC, involving mechanisms consistent with both phagocytosis and macropinocytosis. These findings identify new processes by which PMP could modify endothelial cell phenotype and functions. © 2011 The Authors. Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

    Curcumin Reduces Tumour Necrosis Factor-Enhanced Annexin V-Positive Microparticle Release in Human Vascular Endothelial Cells

    Get PDF
    PURPOSE: Circulating microparticles have been highlighted as biomarkers of cardiovascular disease state and progression. The aim of this study was to evaluate the effects of curcumin on microparticle release from endothelial cells undergoing TNF-induced cell activation and apoptosis. METHODS: This study evaluated the effects of curcumin on microparticle release, cytotoxicity, apoptosis, cell adhesion molecule expression and monocyte adhesion in EAhy926 human endothelial cells RESULTS: The results showed that the numbers of microparticles were increased by tumour necrosis factor (TNF) or the combination of TNF and cycloheximide (CHX). Curcumin attenuated microparticle release caused by TNF or TNF plus CHX treatments. The pretreatment by curcumin not only negated the accelerated cell death and apoptosis caused by TNF and CHX, but also diminished TNF-induced cell activation, as assessed by reduced surface expression of intercellular adhesion molecule 1, and adhesion of monocytes to endothelial monolayers CONCLUSION: Curcumin reduced microparticle release from endothelial cells undergoing cell activation and apoptosis, which supports its protective role in TNF-associated endothelial dysfunction, and highlights its potential use as a nutraceutical agent for vascular inflammatory diseases

    Exploring experimental cerebral malaria pathogenesis through the characterisation of host-derived plasma microparticle protein content

    Full text link
    © 2016 The Author(s). Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection responsible for thousands of deaths in children in sub-Saharan Africa. CM pathogenesis remains incompletely understood but a number of effectors have been proposed, including plasma microparticles (MP). MP numbers are increased in CM patients' circulation and, in the mouse model, they can be localised within inflamed vessels, suggesting their involvement in vascular damage. In the present work we define, for the first time, the protein cargo of MP during experimental cerebral malaria (ECM) with the overarching hypothesis that this characterisation could help understand CM pathogenesis. Using qualitative and quantitative high-throughput proteomics we compared MP proteins from non-infected and P. berghei ANKA-infected mice. More than 360 proteins were identified, 60 of which were differentially abundant, as determined by quantitative comparison using TMT TM isobaric labelling. Network analyses showed that ECM MP carry proteins implicated in molecular mechanisms relevant to CM pathogenesis, including endothelial activation. Among these proteins, the strict association of carbonic anhydrase I and S100A8 with ECM was verified by western blot on MP from DBA/1 and C57BL/6 mice. These results demonstrate that MP protein cargo represents a novel ECM pathogenic trait to consider in the understanding of CM pathogenesis
    corecore