8 research outputs found

    Searching For A Nondiagonal Mass Varying Mechanism In The νμ-ντ System

    Get PDF
    We use atmospheric neutrino data and MINOS data to constrain the MaVaN (mass varying neutrinos) mechanism. The MaVaN model was largely studied in cosmology scenarios and comes from the coupling of the neutrinos with a neutral scalar depending on the local matter density. For atmospheric neutrinos, this new interaction affects the neutrino propagation inside the Earth, and as consequence, induces modifications in their oscillation pattern. To perform such test for a nonstandard oscillation mechanism with a nondiagonal neutrino coupling in the mass basis, we analyze the angular distribution of atmospheric neutrino events as seen by the Super-Kamiokande experiment for the events in the sub-GeV and multi-GeV range and muon neutrinos (antineutrinos) in the MINOS experiment. From the combined analysis of these two sets of data we obtain the best fit for Δm322=2.45×10-3 eV2, sin2(θ23)=0.42 and MaVaN parameter α32=0.28 with modest improvement, Δχ2=1.8, over the standard oscillation scenario. The combination of MINOS data and Super-Kamiokande data prefers small values of MaVaN parameter α32<0.31 at 90% C. L. © 2014 American Physical Society.901ICTP; Abdus Salam International Centre for Theoretical PhysicsTauber, J., (2013) Astron. Astrophys., , (Planck Collaboration), doi: 10.1051/0004-6361/201321529. AAEJAF 0004-6361Jae, A., (2013) Astron. Astrophys., , (Planck Collaboration), doi: 10.1051/0004-6361/201321546. AAEJAF 0004-6361Tegmark, M., Eisenstein, D.J., Strauss, M.A., Weinberg, D.H., Blanton, M.R., Frieman, J.A., Fukugita, M., York, D.G., Cosmological constraints from the SDSS luminous red galaxies (2006) Physical Review D - Particles, Fields, Gravitation and Cosmology, 74 (12), p. 123507. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevD.74.123507&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevD.74.123507Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Kirshner, R.P., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant (1998) Astronomical Journal, 116 (3), pp. 1009-1038. , DOI 10.1086/300499Perlmutter, S., (1999) Astrophys. J., 517, p. 565. , (Supernova Cosmology Project Collaboration),. ASJOAB 0004-637X 10.1086/307221Astier, P., Guy, J., Regnault, N., Pain, R., Aubourg, E., Balam, D., Basa, S., Walton, N., The supernova legacy survey: Measurement of ΩM, ΩΛand w from the first year data set (2006) Astronomy and Astrophysics, 447 (1), pp. 31-48. , DOI 10.1051/0004-6361:20054185Einstein, A., (1917) Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1917, p. 142Weinberg, S., (1989) Rev. Mod. Phys., 61, p. 1. , RMPHAT 0034-6861 10.1103/RevModPhys.61.1Dolgov, A.D., (2004) Proceedings of 18th les Rencontres de Physique de la Vallee d'Aoste, 34. , in, Frascati Physics Series, edited by M. Greco (INFN, Frascati, Rome), Vol.Fardon, R., Nelson, A.E., Weiner, N., J. Cosmol. Astropart. Phys., 2004 (10), p. 005. , JCAPBP 1475-7516 10.1088/1475-7516/2004/10/005Kaplan, D.B., Nelson, A.E., Weiner, N., (2004) Phys. Rev. Lett., 93, p. 091801. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.091801Gu, P., Wang, X., Zhang, X., Dark energy and neutrino mass limits from baryogenesis (2003) Physical Review D, 68 (8), p. 087301. , DOI 10.1103/PhysRevD.68.087301Bi, X.-J., Gu, P., Wang, X., Zhang, X., Thermal leptogenesis in a model with mass varying neutrinos (2004) Physical Review D, 69 (11), p. 113007. , DOI 10.1103/PhysRevD.69.113007Afshordi, N., Zaldarriaga, M., Kohri, K., (2005) Phys. Rev. D, 72, p. 065024. , PRVDAQ 1550-7998 10.1103/PhysRevD.72.065024Honda, M., Takahashi, R., Tanimoto, M., J. High Energy Phys., 2006 (1), p. 042. , JHEPFG 1029-8479 10.1088/1126-6708/2006/01/042Barger, V., Huber, P., Marfatia, D., Solar mass-varying neutrino oscillations (2005) Physical Review Letters, 95 (21), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRL:95, DOI 10.1103/PhysRevLett.95.211802, 211802Cirelli, M., Gonzalez-Garcia, M.C., Pena-Garay, C., Mass varying neutrinos in the Sun (2005) Nuclear Physics B, 719 (1-2), pp. 219-233. , DOI 10.1016/j.nuclphysb.2005.04.034, PII S0550321305003299Gonzalez-Garcia, M.C., De Holanda, P.C., Zukanovich Funchal, R., (2006) Phys. Rev. D, 73, p. 033008. , PRVDAQ 1550-7998 10.1103/PhysRevD.73.033008De Holanda, P.C., J. Cosmol. Astropart. Phys., 2009 (7), p. 024. , JCAPBP 1475-7516 10.1088/1475-7516/2009/07/024Rossi-Torres, F., Guzzo, M.M., De Holanda, P.C., Peres, O.L.G., (2011) Phys. Rev. D, 84, p. 053010. , PRVDAQ 1550-7998 10.1103/PhysRevD.84.053010Carneiro, M.F., De Holanda, P.C., (2013) Adv. High Energy Phys., 2013, p. 293425. , 1687-7357 10.1155/2013/293425Shiraishi, K.K., (2006), http://www-sk.icrr.u-tokyo.ac.jp/doc/sk/pub/, Ph.D. thesis, University of WashingtonAbe, K., (2008) Phys. Rev. D, 77, p. 052001. , (Super-Kamiokande Collaboration),. PRVDAQ 1550-7998 10.1103/PhysRevD.77. 052001Adamson, P., (2013) Phys. Rev. Lett., 110, p. 251801. , (MINOS Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.110.251801Adamson, P., (2011) Phys. Rev. Lett., 106, p. 181801. , (MINOS Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.106.181801In the MaVaN mechanism, neutrino and antineutrinos have the same oscillation probabilityGratieri, D.R., (2012), http://webbif.ifi.unicamp.br/tesesOnline/teses/IF1564.pdf, Ph.D. thesis, State University at Campinas (UNICAMP)Dziewonski, A.D., Anderson, D.L., (1981) Phys. Earth Planet. Inter., 25, p. 297. , PEPIAM 0031-9201 10.1016/0031-9201(81)90046-7For a good reference on kinematical constraints, see [30]Goldanski, V.I., Rosenthal, I.L., (1961) Kinematics of Nuclear Reactions, , (Oxford University Press, New York)Honda, M., Kajita, T., Kasahara, K., Midorikawa, S., Sanuki, T., (2007) Phys. Rev. D, 75, p. 043006. , PRVDAQ 1550-7998 10.1103/PhysRevD.75.043006Gonzalez-Garcia, M.C., Nunokawa, H., Peres, O.L.G., Stanev, T., Valle, J.W.F., (1998) Phys. Rev. D, 58, p. 033004. , PRVDAQ 0556-2821 10.1103/PhysRevD.58.033004Strumia, A., Vissani, F., (2003) Phys. Lett. B, 564, p. 42. , PYLBAJ 0370-2693 10.1016/S0370-2693(03)00616-6Paschos, E.A., Yu, J.Y., Neutrino interactions in oscillation experiments (2002) Physical Review D, 65 (3), p. 033002. , DOI 10.1103/PhysRevD.65.033002Hosaka, J., Ishihara, K., Kameda, J., Koshio, Y., Minamino, A., Mitsuda, C., Miura, M., Saji, C., Three flavor neutrino oscillation analysis of atmospheric neutrinos in Super-Kamiokande (2006) Physical Review D - Particles, Fields, Gravitation and Cosmology, 74 (3), p. 032002. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevD.74.032002&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevD.74.032002http://www-numi.fnal.gov/PublicInfo/forscientists.html, The (Equation presented) is avaliable inGonzalez-Garcia, M.C., Maltoni, M., Salvado, J., Schwetz, T., J. High Energy Phys., 2012 (12), p. 123. , JHEPFG 1029-8479 10.1007/JHEP12(2012)12

    Constraining The Violation Of The Equivalence Principle With Icecube Atmospheric Neutrino Data

    No full text
    The recent high-statistics high-energy atmospheric neutrino data collected by IceCube open a new window to probe new physics scenarios that are suppressed in lower-energy neutrino experiments. In this paper we analyze the IceCube atmospheric neutrino data to constrain the violation of equivalence principle (VEP) in the framework of three neutrinos with nonuniversal gravitational couplings. In this scenario the effect of the VEP on neutrino oscillation probabilities can be parametrized by two parameters, Δγ21≡ γ2-γ1 and Δγ31≡γ3-γ1, where γi's denote the coupling of neutrino mass eigenstates to the gravitational field. By analyzing the latest muon-tracks data sets of IceCube-40 and IceCube-79, besides providing the two-dimensional allowed regions in the (φΔγ21,φΔγ31) plane, we obtain the upper limits |φΔγ21|<9.1×10-27 (at 90% C.L.), which improves the previous limit by ∼4 orders of magnitude, and |φΔγ31| 6×10-27 (at 90% C.L.), which improves the current limit by ∼1 order of magnitude. Also we discuss in detail and analytically the effect of the VEP on neutrino oscillation probabilities. © 2014 American Physical Society.8911Misner, C.W., Thorne, K.S., Wheeler, J.A., (1973) Gravitation, , (Freeman, San Francisco)Wagner, T.A., Schlamminger, S., Gundlach, J.H., Adelberger, E.G., (2012) Classical Quantum Gravity, 29, p. 184002. , CQGRDG 0264-9381 10.1088/0264-9381/29/18/184002Overduin, J., Mitcham, J., Warecki, Z., (2014) Classical Quantum Gravity, 31, p. 015001. , CQGRDG 0264-9381 10.1088/0264-9381/31/1/015001Hohensee, M.A., Leefer, N., Budker, D., Harabati, C., Dzuba, V.A., Flambaum, V.V., (2013) Phys. Rev. Lett., 111, p. 050401. , PRLTAO 0031-9007 10.1103/PhysRevLett.111.050401Horvat, R., (1998) Mod. Phys. Lett. A, 13, p. 2379. , MPLAEQ 0217-7323 10.1142/S0217732398002539Barkovich, M., Casini, H., D'Olivo, J.C., Montemayor, R., Pulsar motions from neutrino oscillations induced by a violation of the equivalence principle (2001) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 506 (1-2), pp. 20-26. , DOI 10.1016/S0370-2693(01)00401-4, PII S0370269301004014Damour, T., Schaefer, G., (1991) Phys. Rev. Lett., 66, p. 2549. , PRLTAO 0031-9007 10.1103/PhysRevLett.66.2549Damour, T., arXiv:gr-qc/0109063Damour, T., Piazza, F., Veneziano, G., (2002) Phys. Rev. Lett., 89, p. 081601. , PRLTAO 0031-9007 10.1103/PhysRevLett.89.081601Armendariz-Picon, C., Penco, R., (2012) Phys. Rev. D, 85, p. 044052. , PRVDAQ 1550-7998 10.1103/PhysRevD.85.044052Damour, T., Donoghue, J.F., (2010) Classical Quantum Gravity, 27, p. 202001. , CQGRDG 0264-9381 10.1088/0264-9381/27/20/202001Carroll, S.M., Mantry, S., Ramsey-Musolf, M.J., Stubbs, C.W., (2009) Phys. Rev. Lett., 103, p. 011301. , PRLTAO 0031-9007 10.1103/PhysRevLett.103.011301Olmo, G.J., Violation of the equivalence principle in modified theories of gravity (2007) Physical Review Letters, 98 (6), p. 061101. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.061101&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.061101Adunas, G.Z., Rodriguez-Milla, E., Ahluwalia, D.V., (2000) Phys. Lett. B, 485, p. 215. , PYLBAJ 0370-2693 10.1016/S0370-2693(00)00697-3Gasperini, M., (1988) Phys. Rev. D, 38, p. 2635. , PRVDAQ 0556-2821 10.1103/PhysRevD.38.2635Gasperini, M., (1989) Phys. Rev. D, 39, p. 3606. , PRVDAQ 0556-2821 10.1103/PhysRevD.39.3606Halprin, A., Leung, C.N., (1991) Phys. Rev. Lett., 67, p. 1833. , PRLTAO 0031-9007 10.1103/PhysRevLett.67.1833Pantaleone, J.T., Halprin, A., Leung, C.N., (1993) Phys. Rev. D, 47, pp. R4199. , PRVDAQ 0556-2821 10.1103/PhysRevD.47.R4199Butler, M.N., Nozawa, S., Malaney, R.A., Boothroyd, A.I., (1993) Phys. Rev. D, 47, p. 2615. , PRVDAQ 0556-2821 10.1103/PhysRevD.47.2615Bahcall, J.N., Krastev, P.I., Leung, C.N., (1995) Phys. Rev. D, 52, p. 1770. , PRVDAQ 0556-2821 10.1103/PhysRevD.52.1770Halprin, A., Leung, C.N., Pantaleone, J.T., (1996) Phys. Rev. D, 53, p. 5365. , PRVDAQ 0556-2821 10.1103/PhysRevD.53.5365Mureika, J.R., (1997) Phys. Rev. D, 56, p. 2408. , PRVDAQ 0556-2821 10.1103/PhysRevD.56.2408Mansour, S.W., Kuo, T.-K., (1999) Phys. Rev. D, 60, p. 097301. , PRVDAQ 0556-2821 10.1103/PhysRevD.60.097301Gago, A.M., Nunokawa, H., Zukanovich Funchal, R., (2000) Phys. Rev. Lett., 84, p. 4035. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.4035Casini, H., D'Olivo, J.C., Montemayor, R., (2000) Phys. Rev. D, 61, p. 105004. , PRVDAQ 0556-2821 10.1103/PhysRevD.61.105004Majumdar, D., Raychaudhuri, A., Sil, A., Golar neutrino results and violation of the equivalence principle: An analysis of the existing data and predictions for SNO (2001) Physical Review D, 63 (7), p. 073014. , DOI 10.1103/PhysRevD.63.073014Mikheev, S.P., Smirnov, A.Y., (1986) Nuovo Cimento Soc. Ital. Fis., 9, p. 17. , NIFCAS 0390-5551 10.1007/BF02508049Mikheev, S.P., Smirnov, A.Y., (1985) Yad. Fiz., 42, p. 1441. , IDFZA7 0044-0027Mikheev, S.P., Smirnov, A.Y., (1985) Sov. J. Nucl. Phys., 42, p. 913. , [, ()]. SJNCAS 0038-5506Minakata, H., Nunokawa, H., (1995) Phys. Rev. D, 51, p. 6625. , PRVDAQ 0556-2821 10.1103/PhysRevD.51.6625Valdiviesso, G.A., Guzzo, M.M., De Holanda, P.C., (2011) Phys. Lett. B, 701, p. 240. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.05.057Foot, R., Volkas, R.R., Yasuda, O., (1998) Phys. Lett. B, 421, p. 245. , PYLBAJ 0370-2693 10.1016/S0370-2693(98)00013-6Foot, R., Volkas, R.R., Yasuda, O., (1998) Phys. Lett. B, 433, p. 82. , PYLBAJ 0370-2693 10.1016/S0370-2693(98)00706-0Foot, R., Leung, C.N., Yasuda, O., (1998) Phys. Lett. B, 443, p. 185. , PYLBAJ 0370-2693 10.1016/S0370-2693(98)01311-2Fogli, G.L., Lisi, E., Marrone, A., Scioscia, G., (1999) Phys. Rev. D, 60, p. 053006. , PRVDAQ 0556-2821 10.1103/PhysRevD.60.053006Gonzalez-Garcia, M.C., Maltoni, M., Atmospheric neutrino oscillations and new physics (2004) Physical Review D, 70 (3), p. 033010. , DOI 10.1103/PhysRevD.70.033010Gonzalez-Garcia, M.C., Halzen, F., Maltoni, M., Physics reach of high-energy and high-statistics IceCube atmospheric neutrino data (2005) Physical Review D - Particles, Fields, Gravitation and Cosmology, 71 (9), pp. 1-13. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRD:71, DOI 10.1103/PhysRevD.71.093010, 093010Battistoni, G., Becherini, Y., Cecchini, S., Cozzi, M., Dekhissi, H., Esposito, L.S., Giacomelli, G., Togo, V., Search for a Lorentz invariance violation contribution in atmospheric neutrino oscillations using MACRO data (2005) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 615 (1-2), pp. 14-18. , DOI 10.1016/j.physletb.2005.04.010, PII S0370269305004867Morgan, D., Winstanley, E., Brunner, J., Thompson, L.F., (2008) Astropart. Phys., 29, p. 345. , APHYEE 0927-6505 10.1016/j.astropartphys.2008.03.005Abbasi, R., (2009) Phys. Rev. D, 79, p. 102005. , (ICECUBE Collaboration),. PRVDAQ 1550-7998 10.1103/PhysRevD.79.102005Pakvasa, S., Simmons, W.A., Weiler, T.J., (1989) Phys. Rev. D, 39, p. 1761. , 1761. PRVDAQ 0556-2821 10.1103/PhysRevD.39.1761Guzzo, M.M., Nunokawa, H., Tomas, R., (2002) Astropart. Phys., 18, p. 277. , APHYEE 0927-6505 10.1016/S0927-6505(02)00149-4Minakata, H., Smirnov, A.Y., (1996) Phys. Rev. D, 54, p. 3698. , PRVDAQ 0556-2821 10.1103/PhysRevD.54.3698Iida, K., Minakata, H., Yasuda, O., (1993) Mod. Phys. Lett. A, 8, p. 1037. , MPLAEQ 0217-7323 10.1142/S021773239300252XMann, R.B., Sarkar, U., (1996) Phys. Rev. Lett., 76, p. 865. , PRLTAO 0031-9007 10.1103/PhysRevLett.76.865Abbasi, R., (2011) Phys. Rev. D, 83, p. 012001. , (ICECUBE Collaboration),. PRVDAQ 1550-7998 10.1103/PhysRevD.83.012001Aartsen, M.G., (2013) Phys. Rev. Lett., 111, p. 081801. , (ICECUBE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.111.081801Will, C.M., (1993) Theory and Experiment in Gravitational Physics, , (Cambridge University Press, Cambridge, England)Dziewonski, A.D., Anderson, D.L., (1981) Phys. Earth Planet. Inter., 25, p. 297. , PEPIAM 0031-9201 10.1016/0031-9201(81)90046-7Gonzalez-Garcia, M.C., Maltoni, M., Salvado, J., Schwetz, T., J. High Energy Phys., 2012 (12), p. 123. , JHEPFG 1029-8479 10.1007/JHEP12(2012)123Aartsen, M.G., (2014) Phys. Rev. D, 89, p. 102001. , (ICECUBE Collaboration),. PRVDAQ 1550-7998 10.1103/PhysRevD.89.102001Aartsen, M.G., (2013) Phys. Rev. Lett., 110, p. 151105. , (ICECUBE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.110.151105Honda, M., Kajita, T., Kasahara, K., Midorikawa, S., Sanuki, T., (2007) Phys. Rev. D, 75, p. 043006. , PRVDAQ 1550-7998 10.1103/PhysRevD.75.043006Sajjad Athar, M., Honda, M., Kajita, T., Kasahara, K., Midorikawa, S., (2013) Phys. Lett. B, 718, p. 1375. , PYLBAJ 0370-2693 10.1016/j.physletb.2012.12.016Esmaili, A., Halzen, F., Peres, O.L.G., J. Cosmol. Astropart. Phys., 2012 (11), p. 041. , JCAPBP 1475-7516 10.1088/1475-7516/2012/11/041Esmaili, A., Smirnov, A.Y., J. High Energy Phys., 2013 (6), p. 026. , JHEPFG 1029-8479 10.1007/JHEP06(2013)026Esmaili, A., Smirnov, A.Y., J. High Energy Phys., 2013 (12), p. 014. , JHEPFG 1029-8479 10.1007/JHEP12(2013)014Abbasi, R., (2012) Astropart. Phys., 35, p. 615. , (IceCube Collaboration),. APHYEE 0927-6505 10.1016/j.astropartphys.2012. 01.004Esmaili, A., Halzen, F., Peres, O.L.G., J. Cosmol. Astropart. Phys., 2013 (7), p. 048. , JCAPBP 1475-7516 10.1088/1475-7516/2013/07/048Colladay, D., Kostelecky, V.A., (1997) Phys. Rev. D, 55, p. 6760. , PRVDAQ 0556-2821 10.1103/PhysRevD.55.6760Colladay, D., Kostelecky, V.A., (1998) Phys. Rev. D, 58, p. 116002. , PRVDAQ 0556-2821 10.1103/PhysRevD.58.116002Kostelecky, A.V., Tasson, J.D., (2011) Phys. Rev. D, 83, p. 016013. , PRVDAQ 1550-7998 10.1103/PhysRevD.83.016013Kostelecky, V.A., Mewes, M., Lorentz and CPT violation in neutrinos (2004) Physical Review D, 69 (1), p. 016005. , DOI 10.1103/PhysRevD.69.016005Alan Kostelecky, V., Mewes, M., Lorentz and CPT violation in the neutrino sector (2004) Physical Review D, 70 (3), p. 031902. , DOI 10.1103/PhysRevD.70.031902Kostelecky, V.A., Mewes, M., (2004) Phys. Rev. D, 70, p. 076002. , PRVDAQ 1550-7998 10.1103/PhysRevD.70.076002Diaz, J.S., Kostelecky, V.A., Mewes, M., (2009) Phys. Rev. D, 80, p. 076007. , PRVDAQ 1550-7998 10.1103/PhysRevD.80.076007Katori, T., Alan Kostelecky, V., Tayloe, R., Global three-parameter model for neutrino oscillations using Lorentz violation (2006) Physical Review D - Particles, Fields, Gravitation and Cosmology, 74 (10), p. 105009. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevD.74.105009&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevD.74.10500

    Doping Liquid Argon with Xenon in ProtoDUNE Single-Phase: Effects on Scintillation Light

    No full text
    International audienceDoping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 770 t of total liquid argon mass with 410 t of fiducial mass. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen

    Doping Liquid Argon with Xenon in ProtoDUNE Single-Phase: Effects on Scintillation Light

    No full text
    International audienceDoping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 770 t of total liquid argon mass with 410 t of fiducial mass. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen

    Doping Liquid Argon with Xenon in ProtoDUNE Single-Phase: Effects on Scintillation Light

    No full text
    International audienceDoping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 770 t of total liquid argon mass with 410 t of fiducial mass. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen
    corecore