49 research outputs found

    Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles

    Get PDF
    Abstract. The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene ∕ NOx ∕ light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations. The authors thank Arnaud Allanic, Sylvain Ravier, Pascal Renard and Pascal Zapf for their contributions in the experiments. The authors also acknowledge the institutions that have provided financial support: the French National Institute for Geophysical Research (CNRS-INSU) within the LEFE-CHAT program through the project “Impact de la chimie des nuages sur la formation d’aérosols organiques secondaires dans l’atmosphère” and the French National Agency for Research (ANR) project CUMULUS ANR-2010-BLAN-617-01. This work was also supported by the EC within the I3 project “Integrating of European Simulation Chambers for Investigating Atmospheric Processes” (EUROCHAMP-2, contract no. 228335). The authors thank the MASSALYA instrumental platform (Aix Marseille Université, lce.univ-amu.fr) for the analysis and measurements used in this paper.This is the final version of the article. It first appeared from Copernicus Publications via http://dx.doi.org/10.5194/acp-16-1747-201

    Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling

    Get PDF
    Biogenic volatile organic compounds (BVOCs) are emitted by vegetation and react with other compounds to form ozone and secondary organic matter (OM). In regional air quality models, biogenic emissions are often calculated using a plant functional type approach, which depends on the land use category. However, over cities, the land use is urban, so trees and their emissions are not represented. Here, we develop a bottom-up inventory of urban tree biogenic emissions in which the location of trees and their characteristics are derived from the tree database of the Paris city combined with allometric equations. Biogenic emissions are then computed for each tree based on their leaf dry biomass, tree-species-dependent emission factors, and activity factors representing the effects of light and temperature. Emissions are integrated in WRF-CHIMERE air quality simulations performed over June–July 2022. Over Paris city, the urban tree emissions have a significant impact on OM, inducing an average increase in the OM of about 5 %, reaching 14 % locally during the heatwaves. Ozone concentrations increase by 1.0 % on average and by 2.4 % during heatwaves, with a local increase of up to 6 %. The concentration increase remains spatially localized over Paris, extending to the Paris suburbs in the case of ozone during heatwaves. The inclusion of urban tree emissions improves the estimation of OM concentrations compared to in situ measurements, but they are still underestimated as trees are still missing from the inventory. OM concentrations are sensitive to terpene emissions, highlighting the importance of favoring urban tree species with low-terpene emissions.</p

    Kinetic Study of the Temperature Dependence of OH-Initiated Oxidation of n-Dodecane

    No full text
    Reaction rate constants for the reaction of n-dodecane with hydroxyl radicals were measured as a function of temperature between 283 and 303 K, using the relative rate method in the CESAM chamber (French acronym for "Chamber for Atmospheric Multiphase Experimental Simulation"). The rate constants obtained at 283, 293 and 303 K are (1.27 ± 0.31)×10-11 , (1.33 ± 0.34)×10-11 , (1.27 ± 0.40)×10-11 cm 3 molecule-1 s-1 , respectively. Rate constants measured were in excellent agreement with the few available data in the literature over the studied temperature range (283-340K). Rate constants estimated by the structure-activity relationship and transition state theory methods agreed with our experimental data within 14 %. From these data combined with previous literature measurement, the following Arrhenius expression; + = (9.77 ± 6.19)10 −11 × exp [ −595 ±5580 ] 3 −1 −1 , was found valid over a temperature range (283-340 K) of the tropospheric interest

    Gaseous products and secondary organic aerosol formation during long term oxidation of isoprene and methacrolein

    Get PDF
    International audienceFirst-and higher order-generation products formed from the oxidation of isoprene and methacrolein with OH radicals in the presence of NOx have been studied in a simulation chamber. Significant oxidation rates have been maintained for up to 7 h, allowing the study of highly oxidized products. Gas-phase product distribution and yields were obtained, and show good agreement with previous studies. Secondary organic aerosol (SOA) formation has also been investigated. SOA mass yields from previous studies show large discrepancies. The mass yields obtained here were consistent with the lowest values found in the literature, and more specifically in agreement with studies carried out with natural light or artificial lamps with emission similar to the solar spectrum. Differences in light source are therefore proposed to explain partially the discrepancies observed between different studies in the literature for both isoprene and methacrolein-SOA mass yields. There is a high degree of similarity between the SOA mass spectra from isoprene and methacrolein photooxidation, thus strengthening the importance of the role of methacrolein in SOA formation from isoprene photooxidation under our experimental conditions (i.e., presence of NOx and long term oxidation). According to our results, SOA mass yields from both isoprene and methacrolein in the atmosphere could be lower than suggested by most of the current chamber studies
    corecore