67 research outputs found

    Investigating the Role of Non-Covalent Interactions in Conformation and Assembly of Triazine-Based Sequence-Defined Polymers

    Full text link
    Grate and co-workers at Pacific Northwest National Laboratory recently developed high information content triazine-based sequence-defined polymers that are robust by not having hydrolyzable bonds and can encode structure and functionality by having various side chains. Through molecular dynamics (MD) simulations, the triazine polymers have been shown to form particular sequential stacks, have stable backbone-backbone interactions through hydrogen bonding and π\pi-π\pi interactions, and conserve their \emph{cis/trans} conformations throughout the simulation. However, we do not know the effects of having different side chains and backbone structures on the entire conformation and whether the \emph{cis} or \emph{trans} conformation is more stable for the triazine polymers. For this reason, we investigate the role of non-covalent interactions for different side chains and backbone structures on the conformation and assembly of triazine polymers in MD simulations. Since there is a high energy barrier associated to the \emph{cis}-\emph{trans} isomerization, we use replica exchange molecular dynamics (REMD) to sample various conformations of triazine hexamers. To obtain rates and intermediate conformations, we use the recently developed concurrent adaptive sampling (CAS) algorithm for dimer of triazine trimers. We found that the hydrogen bonding ability of the backbone structure is critical for the triazine polymers to self-assemble into nanorod-like structures, rather than that of the side chains, which can help researchers design more robust materials

    EMSL Geochemistry, Biogeochemistry and Subsurface Science-Science Theme Advisory Panel Meeting

    Full text link
    This report covers the topics of discussion and the recommendations of the panel members. On December 8 and 9, 2010, the Geochemistry, Biogeochemistry, and Subsurface Science (GBSS) Science Theme Advisory Panel (STAP) convened for a more in-depth exploration of the five Science Theme focus areas developed at a similar meeting held in 2009. The goal for the fiscal year (FY) 2011 meeting was to identify potential topical areas for science campaigns, necessary experimental development needs, and scientific members for potential research teams. After a review of the current science in each of the five focus areas, the 2010 STAP discussions successfully led to the identification of one well focused campaign idea in pore-scale modeling and five longer-term potential research campaign ideas that would likely require additional workshops to identify specific research thrusts. These five campaign areas can be grouped into two categories: (1) the application of advanced high-resolution, high mass accuracy experimental techniques to elucidate the interplay between geochemistry and microbial communities in terrestrial ecosystems and (2) coupled computation/experimental investigations of the electron transfer reactions either between mineral surfaces and outer membranes of microbial cells or between the outer and inner membranes of microbial cells
    • …
    corecore