25 research outputs found

    Safety and efficacy of combination therapy with low-dose gemcitabine, paclitaxel, and sorafenib in patients with cisplatin-resistant urothelial cancer

    Get PDF
    Various regimens including molecular targeted agents have been examined in patients with cisplatin (CDDP)-resistant urothelial cancer (UC). However, some studies have been stopped owing to the development of severe adverse events. The main aim of this study was to examine the anticancer effects, changes in the quality of life (QoL), and safety of combined therapy of low-dose gemcitabine, paclitaxel, and sorafenib (LD-GPS) in patients with CDDP-resistant UC. Twenty patients were treated with gemcitabine (700 mg/m2 on day 1), paclitaxel (70 mg/m2 on day 1), and sorafenib (400 mg/day on days 8?22). QoL and pain relief were evaluated using the short-form survey (SF)-36 for bodily pain and the visual analog scale (VAS). VAS scores were significantly decreased by both the second- and third-line therapies (P = 0.012 and 0.028, respectively). The bodily pain score from the SF-36 survey was also significantly (P = 0.012) decreased. Complete responses, partial responses, and stable disease were found in 0 (0.0 %), 1 (5.0 %), and 13 patients (65 %), respectively. The median (interquartile range) period of overall survival after starting of this therapy was 7 (5?11) months. Three patients (15.0 %) stopped therapy because of grade 3 fatigue and hand?foot reactions. LD-GPS therapy was well tolerated by patients with CDDP-resistant UC. QoL was maintained, and improvements in their pain levels were found after treatment; pain relief was detected after third-line therapy. We suggest that this treatment regimen is worthy of consideration as second- and third-line therapy for patients with CDDP-resistant UC

    Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.

    Get PDF
    BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link

    Use of Mobile Devices to Measure Outcomes in Clinical Research, 2010–2016: A Systematic Literature Review

    Get PDF
    Introduction The use of mobile devices in clinical research has advanced substantially in recent years due to the rapid pace of technology development. With an overall aim of informing the future use of mobile devices in interventional clinical research to measure primary outcomes, we conducted a systematic review of the use of and clinical outcomes measured by mobile devices (mobile outcomes) in observational and interventional clinical research. Method We conducted a PubMed search using a range of search terms to retrieve peer-reviewed articles on clinical research published between January 2010 and May 2016, in which mobile devices were used to measure study outcomes. We screened each publication for specific inclusion and exclusion criteria. We then identified and qualitatively summarized the use of mobile outcome assessments in clinical research, including the type and design of the study, therapeutic focus, type of mobile device(s) used, and specific mobile outcomes reported. Results The search retrieved 2,530 potential articles of interest. After screening, 88 publications remained. Twenty-five percent of publications (n=22) described mobile outcomes used in interventional research, and the rest (n=66) described observational clinical research. Thirteen therapeutic areas were represented. Five categories of mobile devices were identified—inertial sensors, biosensors, pressure sensors and walkways, medication adherence monitors, and location monitors; inertial sensors/accelerometers were most common (reported in 86% of publications). Among the variety of mobile outcomes, various assessments of physical activity were most common (reported in 74% of publications). Other mobile outcomes included assessments of sleep, mobility, and pill adherence, as well as biomarkers assessed using a mobile device, including cardiac, glucose, gastric reflux, respiratory measures and intensity of head-related injury. Conclusion Mobile devices are being widely used in clinical research to assess outcomes, although their use in interventional research to assess therapeutic effectiveness is limited. For mobile devices to be used more frequently in pivotal interventional research – such as trials informing regulatory decision-making – more focus should be placed on: 1) consolidating the evidence supporting the clinical meaningfulness of specific mobile outcomes, and 2) standardizing the use of mobile devices in clinical research to measure specific mobile outcomes (e.g., data capture frequencies, placement of device). To that aim, this manuscript offers a broad overview of the various mobile outcome assessments currently used in observational and interventional research, and categorizes and consolidates this information for researchers interested in using mobile devices to assess outcomes in interventional research.</p

    Use of mobile devices to measure outcomes in clinical research, 2010-2016: A systematic literature review

    No full text
    Introduction The use of mobile devices in clinical research has advanced substantially in recent years due to the rapid pace of technology development. With an overall aim of informing the future use of mobile devices in interventional clinical research to measure primary outcomes, we conducted a systematic review of the use of and clinical outcomes measured by mobile devices (mobile outcomes) in observational and interventional clinical research. Method We conducted a PubMed search using a range of search terms to retrieve peer-reviewed articles on clinical research published between January 2010 and May 2016, in which mobile devices were used to measure study outcomes. We screened each publication for specific inclusion and exclusion criteria. We then identified and qualitatively summarized the use of mobile outcome assessments in clinical research, including the type and design of the study, therapeutic focus, type of mobile device(s) used, and specific mobile outcomes reported. Results The search retrieved 2,530 potential articles of interest. After screening, 88 publications remained. Twenty-five percent of publications (n=22) described mobile outcomes used in interventional research, and the rest (n=66) described observational clinical research. Thirteen therapeutic areas were represented. Five categories of mobile devices were identified—inertial sensors, biosensors, pressure sensors and walkways, medication adherence monitors, and location monitors; inertial sensors/accelerometers were most common (reported in 86% of publications). Among the variety of mobile outcomes, various assessments of physical activity were most common (reported in 74% of publications). Other mobile outcomes included assessments of sleep, mobility, and pill adherence, as well as biomarkers assessed using a mobile device, including cardiac, glucose, gastric reflux, respiratory measures and intensity of head-related injury. Conclusion Mobile devices are being widely used in clinical research to assess outcomes, although their use in interventional research to assess therapeutic effectiveness is limited. For mobile devices to be used more frequently in pivotal interventional research – such as trials informing regulatory decision-making – more focus should be placed on: 1) consolidating the evidence supporting the clinical meaningfulness of specific mobile outcomes, and 2) standardizing the use of mobile devices in clinical research to measure specific mobile outcomes (e.g., data capture frequencies, placement of device). To that aim, this manuscript offers a broad overview of the various mobile outcome assessments currently used in observational and interventional research, and categorizes and consolidates this information for researchers interested in using mobile devices to assess outcomes in interventional research.</p

    Use of mobile devices to measure outcomes in clinical research, 2010-2016: A systematic literature review

    No full text
    Introduction The use of mobile devices in clinical research has advanced substantially in recent years due to the rapid pace of technology development. With an overall aim of informing the future use of mobile devices in interventional clinical research to measure primary outcomes, we conducted a systematic review of the use of and clinical outcomes measured by mobile devices (mobile outcomes) in observational and interventional clinical research. Method We conducted a PubMed search using a range of search terms to retrieve peer-reviewed articles on clinical research published between January 2010 and May 2016, in which mobile devices were used to measure study outcomes. We screened each publication for specific inclusion and exclusion criteria. We then identified and qualitatively summarized the use of mobile outcome assessments in clinical research, including the type and design of the study, therapeutic focus, type of mobile device(s) used, and specific mobile outcomes reported. Results The search retrieved 2,530 potential articles of interest. After screening, 88 publications remained. Twenty-five percent of publications (n=22) described mobile outcomes used in interventional research, and the rest (n=66) described observational clinical research. Thirteen therapeutic areas were represented. Five categories of mobile devices were identified—inertial sensors, biosensors, pressure sensors and walkways, medication adherence monitors, and location monitors; inertial sensors/accelerometers were most common (reported in 86% of publications). Among the variety of mobile outcomes, various assessments of physical activity were most common (reported in 74% of publications). Other mobile outcomes included assessments of sleep, mobility, and pill adherence, as well as biomarkers assessed using a mobile device, including cardiac, glucose, gastric reflux, respiratory measures and intensity of head-related injury. Conclusion Mobile devices are being widely used in clinical research to assess outcomes, although their use in interventional research to assess therapeutic effectiveness is limited. For mobile devices to be used more frequently in pivotal interventional research – such as trials informing regulatory decision-making – more focus should be placed on: 1) consolidating the evidence supporting the clinical meaningfulness of specific mobile outcomes, and 2) standardizing the use of mobile devices in clinical research to measure specific mobile outcomes (e.g., data capture frequencies, placement of device). To that aim, this manuscript offers a broad overview of the various mobile outcome assessments currently used in observational and interventional research, and categorizes and consolidates this information for researchers interested in using mobile devices to assess outcomes in interventional research.</p
    corecore