948 research outputs found
Measurement of the branching fraction
The branching fraction is measured in a data sample
corresponding to 0.41 of integrated luminosity collected with the LHCb
detector at the LHC. This channel is sensitive to the penguin contributions
affecting the sin2 measurement from The
time-integrated branching fraction is measured to be . This is the most precise measurement to
date
Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−
The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions
Opposite-side flavour tagging of B mesons at the LHCb experiment
The calibration and performance of the oppositeside
flavour tagging algorithms used for the measurements
of time-dependent asymmetries at the LHCb experiment
are described. The algorithms have been developed using
simulated events and optimized and calibrated with
B
+ →J/ψK
+, B0 →J/ψK
∗0 and B0 →D
∗−
μ
+
νμ decay
modes with 0.37 fb−1 of data collected in pp collisions
at
√
s = 7 TeV during the 2011 physics run. The oppositeside
tagging power is determined in the B
+ → J/ψK
+
channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty
is statistical and the second is systematic
Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Observation of two new baryon resonances
Two structures are observed close to the kinematic threshold in the mass spectrum in a sample of proton-proton collision data, corresponding
to an integrated luminosity of 3.0 fb recorded by the LHCb experiment.
In the quark model, two baryonic resonances with quark content are
expected in this mass region: the spin-parity and
states, denoted and .
Interpreting the structures as these resonances, we measure the mass
differences and the width of the heavier state to be
MeV,
MeV,
MeV, where the first and second
uncertainties are statistical and systematic, respectively. The width of the
lighter state is consistent with zero, and we place an upper limit of
MeV at 95% confidence level. Relative
production rates of these states are also reported.Comment: 17 pages, 2 figure
Measurement of the CP-violating phase phi_s in the decay Bs->J/psi phi
We present a measurement of the time-dependent CP-violating asymmetry in B_s
-> J/psi phi decays, using data collected with the LHCb detector at the LHC.
The decay time distribution of B_s -> J/psi phi is characterized by the decay
widths Gamma_H and Gamma_L of the heavy and light mass eigenstates of the
B_s-B_s-bar system and by a CP-violating phase phi_s. In a sample of about 8500
B_s -> J/psi phi events isolated from 0.37 fb^-1 of pp collisions at sqrt(s)=7
TeV we measure phi_s = 0.15 +/- 0.18 (stat) +/- 0.06 (syst) rad. We also find
an average B_s decay width Gamma_s == (Gamma_L + Gamma_H)/2 = 0.657 +/- 0.009
(stat) +/- 0.008 (syst) ps^-1 and a decay width difference Delta Gamma_s ==
Gamma_L - Gamma_H} = 0.123 +/- 0.029 (stat) +/- 0.011 (syst) ps^-1. Our
measurement is insensitive to the transformation (phi_s,DeltaGamma_s --> pi -
phi_s, - Delta Gamma_s.Comment: 9 pages, 3 figure
Search for CP violation in decays
A model-independent search for direct CP violation in the Cabibbo suppressed
decay in a sample of approximately 370,000 decays is
carried out. The data were collected by the LHCb experiment in 2010 and
correspond to an integrated luminosity of 35 pb. The normalized Dalitz
plot distributions for and are compared using four different
binning schemes that are sensitive to different manifestations of CP violation.
No evidence for CP asymmetry is found.Comment: 13 pages, 8 figures, submitted to Phys. Rev.
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Search for the decay Bs0→D*∓π±
A search for the decay Bs0→D*∓π± is presented using a data sample corresponding to an integrated luminosity of 1.0 fb-1 of pp collisions collected by LHCb. This decay is expected to be mediated by a W-exchange diagram, with little contribution from rescattering processes, and therefore a measurement of the branching fraction will help us to understand the mechanism behind related decays such as Bs0→π+π- and Bs0→DD- . Systematic uncertainties are minimized by using B0→D*∓π± as a normalization channel. We find no evidence for a signal, and set an upper limit on the branching fraction of B(Bs0→D*∓π±)<6.1(7.8)×10-6 at 90% (95%) confidence level
Measurement of charged particle multiplicities in collisions at TeV in the forward region
The charged particle production in proton-proton collisions is studied with
the LHCb detector at a centre-of-mass energy of TeV in different
intervals of pseudorapidity . The charged particles are reconstructed
close to the interaction region in the vertex detector, which provides high
reconstruction efficiency in the ranges and
. The data were taken with a minimum bias trigger, only requiring
one or more reconstructed tracks in the vertex detector. By selecting an event
sample with at least one track with a transverse momentum greater than 1 GeV/c
a hard QCD subsample is investigated. Several event generators are compared
with the data; none are able to describe fully the multiplicity distributions
or the charged particle density distribution as a function of . In
general, the models underestimate the charged particle production
- …