4,460 research outputs found
A Unified Term for Directed and Undirected Motility in Collective Cell Invasion
In this paper we develop mathematical models for collective cell motility.
Initially we develop a model using a linear diffusion-advection type equation
and fit the parameters to data from cell motility assays. This approach is
helpful in classifying the results of cell motility assay experiments. In
particular, this model can determine degrees of directed versus undirected
collective cell motility. Next we develop a model using a nonlinear diffusion
term that is able capture in a unified way directed and undirected collective
cell motility. Finally we apply the nonlinear diffusion approach to a problem
in tumor cell invasion, noting that neither chemotaxis or haptotaxis are
present in the system under consideration in this article
Problems in the analysis of the carbohydrate moiety of glycoproteins
Imperial Users onl
A conjugate gradient minimisation approach to generating holographic traps for ultracold atoms
Direct minimisation of a cost function can in principle provide a versatile
and highly controllable route to computational hologram generation. However, to
date iterative Fourier transform algorithms have been predominantly used. Here
we show that the careful design of cost functions, combined with numerically
efficient conjugate gradient minimisation, establishes a practical method for
the generation of holograms for a wide range of target light distributions.
This results in a guided optimisation process, with a crucial advantage
illustrated by the ability to circumvent optical vortex formation during
hologram calculation. We demonstrate the implementation of the conjugate
gradient method for both discrete and continuous intensity distributions and
discuss its applicability to optical trapping of ultracold atoms.Comment: 11 pages, 4 figure
Multi-wavelength holography with a single spatial light modulator for ultracold atom experiments
The authors acknowledge funding from the Leverhulme Trust Research Project Grant RPG-2013-074 and from the EPSRC grant GR/T08272/01.We demonstrate a method to independently and arbitrarily tailor the spatial profile of light of multiple wavelengths and we show possible applications to ultracold atoms experiments. A single spatial light modulator is programmed to create a pattern containing multiple spatially separated structures in the Fourier plane when illuminated with a single wavelength. When the modulator is illuminated with overlapped laser beams of different wavelengths, the position of the structures is wavelength-dependent. Hence, by designing their separations appropriately, a desired overlap of different structures at different wavelengths is obtained. We employ regional phase calculation algorithms and demonstrate several possible experimental scenarios by generating light patterns with 670 nm, 780 nm and 1064 nm laser light which are accurate to the level of a few percent. This technique is easily integrated into cold atom experiments, requiring little optical access.PostprintPeer reviewe
Invariant tensors and cellular categories
Let U be the quantised enveloping algebra associated to a Cartan matrix of
finite type. Let W be the tensor product of a finite list of highest weight
representations of U. Then the centraliser algebra of W has a basis called the
dual canonical basis which gives an integral form. We show that this integral
form is cellular by using results due to Lusztig.Comment: 6 pages; to appear in Journal of Algebr
Molecular Dynamics Simulation in Arbitrary Geometries for Nanoscale Fluid Mechanics
Simulations of nanoscale systems where fluid mechanics plays an important role are required to help design and understand nano-devices and biological systems. A simulation method which hybridises molecular dynamics (MD) and continuum computational fluid dynamics (CFD) is demonstrated to be able to accurately represent the relevant physical phenomena and be computationally tractable. An MD code has been written to perform MD simulations in systems where the geometry is described by a mesh of unstructured arbitrary polyhedral cells that have been spatially decomposed into irregular portions for parallel processing. The MD code that has been developed may be used for simulations on its own, or may serve as the MD component of a hybrid method. The code has been implemented using OpenFOAM, an open source C++ CFD toolbox (www.openfoam.org). Two key enabling components are described in detail. 1) Parallel generation of initial configurations of molecules in arbitrary geometries. 2) Calculation of intermolecular pair forces, including between molecules that lie on mesh portions assigned to different, and possibly non-neighbouring processors. To calculate intermolecular forces, the spatial relationship of mesh cells is calculated once at the start of the simulation and only the molecules contained in cells that have part of their surface closer than a cut-off distance are required to interact. Interprocessor force calculations are carried out by creating local copies of molecules from other processors in a layer around the processor in question. The process of creating these copied molecules is described in detail. A case study of flow in a realistic nanoscale mixing channel, where the geometry is drawn and meshed using engineering CAD tools, is simulated to demonstrate the capabilities of the code for complex simulations
Seen and Not Heard Sociological Approaches to Childhood: Black Children, Agency and Implications for Child Welfare
In this article, the authors consider the socio-historical conceptions of childhood in relation to Black children and their unique relationship with child welfare institutions. Against this background we apply models of childhood to issues of race and social agency and argue that these elements have been inadequately addressed in developmental models of childhood. Following these concerns, we present a social model of childhood and consider how these distinct and different ways of understanding children might be applied to child welfare practice. This child centered approach presents a unique opportunity to incorporate the differential positioning of Black children in the wider society by engaging with their everyday lives as a frameworkfor child welfare practice. This framework allows for a greater participation of children and specifically, Black children in decision making processes. In the final section we suggest possible outcomes of integrating this approach into child welfare practice
- …