5,037 research outputs found
Experimental Design for the Gemini Planet Imager
The Gemini Planet Imager (GPI) is a high performance adaptive optics system
being designed and built for the Gemini Observatory. GPI is optimized for high
contrast imaging, combining precise and accurate wavefront control, diffraction
suppression, and a speckle-suppressing science camera with integral field and
polarimetry capabilities. The primary science goal for GPI is the direct
detection and characterization of young, Jovian-mass exoplanets. For plausible
assumptions about the distribution of gas giant properties at large semi-major
axes, GPI will be capable of detecting more than 10% of gas giants more massive
than 0.5 M_J around stars younger than 100 Myr and nearer than 75 parsecs. For
systems younger than 1 Gyr, gas giants more massive than 8 M_J and with
semi-major axes greater than 15 AU are detected with completeness greater than
50%. A survey targeting young stars in the solar neighborhood will help
determine the formation mechanism of gas giant planets by studying them at ages
where planet brightness depends upon formation mechanism. Such a survey will
also be sensitive to planets at semi-major axes comparable to the gas giants in
our own solar system. In the simple, and idealized, situation in which planets
formed by either the "hot-start" model of Burrows et al. (2003) or the core
accretion model of Marley et al. (2007), a few tens of detected planets are
sufficient to distinguish how planets form.Comment: 15 pages, 9 figures, revised after referee's comments and resubmitted
to PAS
Recommended from our members
The development of the passé composé in lower-intermediate learners of French as a second language
In this study we tracked the development of the passe compose in second-language learners of French whose first language is English. Although the passe compose is a highly used tense among native speakers of French and it appears to present particular difficulty for first-language English speakers, its second-language development has been surprisingly under-researched. In order to trace developmental patterns of the passe compose we obtained a corpus of obligatory context use of this tense by 30 Year-12 (lower-intermediate) students at two time points six months apart and analysed the data both quantitatively and qualitatively. Our findings suggest that these students used remarkably few memorized formulas, that they passed through five distinct stages in their acquisition of the passe compose, that those early stages were characterized by transfer errors, and that the presence of the auxiliary, whether correct or incorrect, formed a crucial stage in the development of the tense. Theoretical explanations for the findings are presented together with some tentative pedagogical implications
Theory of transient chimeras in finite Sakaguchi-Kuramoto networks
Chimera states are a phenomenon in which order and disorder can co-exist
within a network that is fully homogeneous. Precisely how transient chimeras
emerge in finite networks of Kuramoto oscillators with phase-lag remains
unclear. Utilizing an operator-based framework to study nonlinear oscillator
networks at finite scale, we reveal the spatiotemporal impact of the adjacency
matrix eigenvectors on the Sakaguchi-Kuramoto dynamics. We identify a specific
condition for the emergence of transient chimeras in these finite networks: the
eigenvectors of the network adjacency matrix create a combination of a zero
phase-offset mode and low spatial frequency waves traveling in opposite
directions. This combination of eigenvectors leads directly to the coherent and
incoherent clusters in the chimera. This approach provides two specific
analytical predictions: (1) a precise formula predicting the combination of
connectivity and phase-lag that creates transient chimeras, (2) a mathematical
procedure for rewiring arbitrary networks to produce transient chimeras
Infrared Surface Brightness Fluctuations of the Coma Elliptical NGC 4874 and the Value of the Hubble Constant
We have used the Keck I Telescope to measure K-band surface brightness
fluctuations (SBFs) of NGC 4874, the dominant elliptical galaxy in the Coma
cluster. We use deep HST WFPC2 optical imaging to account for the contamination
due to faint globular clusters and improved analysis techniques to derive
measurements of the SBF apparent magnitude. Using a new SBF calibration which
accounts for the dependence of K-band SBFs on the integrated color of the
stellar population, we measure a distance modulus of 34.99+/-0.21 mag (100+/-10
Mpc) for the Coma cluster. The resulting value of the Hubble constant is 71+/-8
km/s/Mpc, not including any systematic error in the HST Cepheid distance scale.Comment: ApJ Letters, in press. Uses emulateapj5.st
Crossing the Brown Dwarf Desert Using Adaptive Optics: A Very Close L-Dwarf Companion to the Nearby Solar Analog HR 7672
We have found a very faint companion to the active solar analog HR 7672 (HD
190406; GJ 779; 15 Sge). Three epochs of high resolution imaging using adaptive
optics (AO) at the Gemini-North and Keck II Telescopes demonstrate that HR
7672B is a common proper motion companion, with a separation of 0.79" (14 AU)
and a 2.16 um flux ratio of 8.6 mags. Using follow-up K-band spectroscopy from
Keck AO+NIRSPEC, we measure a spectral type of L4.5+/-1.5. This is the closest
ultracool companion around a main sequence star found to date by direct
imaging. We estimate the primary has an age of 1-3 Gyr. Assuming coevality, the
companion is most likely substellar, with a mass of 55-78 Mjup based on
theoretical models. The primary star shows a long-term radial velocity trend,
and we combine the radial velocity data and AO imaging to set a firm
(model-independent) lower limit of 48 Mjup. In contrast to the paucity of brown
dwarf companions at <~4 AU around FGK dwarfs, HR 7672B implies that brown dwarf
companions do exist at separations comparable to those of the giant planets in
our own solar system. Its presence is at variance with scenarios where brown
dwarfs form as ejected stellar embryos. Moreover, since HR 7672B is likely too
massive to have formed in a circumstellar disk as planets are believed to, its
discovery suggests that a diversity of physical processes act to populate the
outer regions of exoplanetary systems.Comment: Astrophysical Journal, in pres
Seeking the Ultraviolet Ionizing Background at z~3 with the Keck Telescope
We describe the initial results of a deep long-slit emission line search for
redshifted (2.7<z<4.1) Lyman-alpha. These observations are used to constrain
the fluorescent Ly-alpha emission from the population of clouds whose
absorption produces the higher-column-density component of the Ly-alpha forest
in quasar spectra. We use the results to set an upper limit on the ultraviolet
ionizing background. Our spectroscopic data obtained with the Keck II telescope
at lambda/(Delta lambda FWHM)~2000 reveals no candidate Ly-alpha emission over
the wavelength range of 4500-6200 Ang along a 3 arcmin slit in a 5400 s
integration. Our 3 sigma upper bound on the mean intensity of the ionizing
background at the Lyman limit is J(nu 0) < 2E-21 erg/s/cm**2/Hz/sr for
2.7<z<3.1 (where we are most sensitive), assuming Lyman limit systems have
typical radii of 70 kpc (q_0=0.5, H_0=50 km/s/Mpc). This constraint is more
than an order of magnitude more stringent than any previously published direct
limit. However, it is still a factor of three above the ultraviolet background
level expected due to the integrated light of known quasars at z~3. This pilot
study confirms the conclusion of Gould \& Weinberg (1996) that integrations of
several hours on a 10-m class telescope should be capable of measuring J(nu 0)
at high redshift.Comment: 22 pages, 2 postscipt figures. Latex requires aaspp4.sty and epsf.sty
(included). Accepted for publication in the Astronomical Journal (Nov 1998
Sulfur species behavior in soil organic matter during decomposition
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G04011, doi:10.1029/2007JG000538.Soil organic matter (SOM) is a primary reservoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to speciation in SOM, particularly in conifer forests, and S species fractions in SOM change during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S.The authors received funding for this work from the Department of Energy,
National Science Foundation, and the Dartmouth College Dean of Faculty
and Earth Sciences
Discovery of Reflection Nebulosity Around Five Vega-like Stars
Coronagraphic optical observations of six Vega-like stars reveal reflection
nebulosities, five of which were previously unknown. The nebulosities
illuminated by HD 4881, HD 23362, HD 23680, HD 26676, and HD 49662 resemble
that of the Pleiades, indicating an interstellar origin for dust grains. The
reflection nebulosity around HD 123160 has a double-arm morphology, but no
disk-like feature is seen as close as 2.5 arcsec from the star in K-band
adaptive optics data. We demonstrate that uniform density dust clouds
surrounding HD 23362, HD 23680 and HD 123160 can account for the observed
12-100 micron spectral energy distributions. For HD 4881, HD 26676, and HD
49662 an additional emission source, such as from a circumstellar disk or
non-equilibrium grain heating, is required to fit the 12-25 micron data. These
results indicate that in some cases, particularly for Vega-like stars located
beyond the Local Bubble (>100 pc), the dust responsible for excess thermal
emission may originate from the interstellar medium rather than from a
planetary debris system.Comment: The Astrophysical Journal, in press for March, 2002 (32 pages, 13
figures
A Giant Outburst at Millimeter Wavelengths in the Orion Nebula
BIMA observations of the Orion nebula discovered a giant flare from a young
star previously undetected at millimeter wavelengths. The star briefly became
the brightest compact object in the nebula at 86 GHz. Its flux density
increased by more than a factor of 5 on a timescale of hours, to a peak of 160
mJy. This is one of the most luminous stellar radio flares ever observed.
Remarkably, the Chandra X-ray observatory was in the midst of a deep
integration of the Orion nebula at the time of the BIMA discovery; the source's
X-ray flux increased by a factor of 10 approximately 2 days before the radio
detection. Follow-up radio observations with the VLA and BIMA showed that the
source decayed on a timescale of days, then flared again several times over the
next 70 days, although never as brightly as during the discovery. Circular
polarization was detected at 15, 22, and 43 GHz, indicating that the emission
mechanism was cyclotron. VLBA observations 9 days after the initial flare yield
a brightness temperature Tb > 5 x 10^7 K at 15 GHz. Infrared spectroscopy
indicates the source is a K5V star with faint Br gamma emission, suggesting
that it is a weak-line T Tauri object. Zeeman splitting measurements in the
infrared spectrum find B ~ 2.6 +/- 1.0 kG. The flare is an extreme example of
magnetic activity associated with a young stellar object. These data suggest
that short observations obtained with ALMA will uncover hundreds of flaring
young stellar objects in the Orion region.Comment: 29 pages, 7 figures, accepted for publication in Ap
- …