41 research outputs found

    Light-controlled reversible modulation of frontier molecular orbital energy levels in trifluoromethylated diarylethenes

    Get PDF
    Among bistable photochromic molecules, diarylethenes (DAEs) possess the distinct feature that upon photoisomerization they undergo a large modulation of their pelectronic system, accompanied by a marked shift of the HOMO/LUMO energies and hence oxidation/reduction potentials. The electronic modulation can be utilized to remote-control charge-as well as energy-transfer processes and it can be transduced to functional entities adjacent to the DAE core, thereby regulating their properties. In order to exploit such photoswitchable systems it is important to precisely adjust the absolute position of their HOMO and LUMO levels and to maximize the extent of the photoinduced shifts of these energy levels. Here, we present a comprehensive study detailing how variation of the substitution pattern of DAE compounds, in particular using strongly electron-accepting and chemically stable trifluoromethyl groups either in the periphery or at the reactive carbon atoms, allows for the precise tuning of frontier molecular orbital levels over a broad energy range and the generation of photoinduced shifts of more than 1 eV. Furthermore, the effect of different DAE architectures on the transduction of these shifts to an adjacent functional group is discussed. Whereas substitution in the periphery of the DAE motif has only minor implications on the photochemistry, trifluoromethylation at the reactive carbon atoms strongly disturbs the isomerization efficiency. However, this can be overcome by using a nonsymmetrical substitution pattern or by combination with donor groups, rendering the resulting photoswitches attractive candidates for the construction of remote-controlled functional systems

    ROLE OF PROLINE PEPTIDE-BOND ISOMERIZATION IN UNFOLDING AND REFOLDING OF RIBONUCLEASE

    No full text
    The isomerization of the proline peptide bond between tyrosine-92 and proline-93 in bovine pancreatic ribonuclease A has been investigated in the unfolded protein as well as during the slow refolding process. This bond is in the cis state in the native protein. By comparison of various homologous ribonucleases we show that isomerization of proline-93 is associated with a change in fluorescence of tyrosine-92. This provides a spectroscopic probe to monitor this process in the disordered chain after unfolding as well as its reversal in the course of slow refolding. In unfolded ribonuclease incorrect trans isomers of proline-93 are found in both slow-folding species. trans----cis reversal of isomerization of this proline peptide bond during refolding shows kinetics that are identical with the time course of formation of native protein. Isomerization of proline-93 is slower than the formation of a native-like folded intermediate that accumulates on the major slow refolding pathway. Models to explain these results are discussed

    Simulation of Anti Wear Performance Using a Modified Brugger Test Set Up

    No full text
    Modern hydraulic oils have to fulfill a broad variety of parameters limitations to guarantee a proper system performance throughout a considerable lifetime. A comprehensive test of the liquids nowadays just can be performed by using long term hydraulic pump test set ups, including several different test stages. One of the most critical parameters in hydraulic pump testing is the pump wear indicating the anti-wear performance of the used oil. In this paper the authors focused on the development of a new testing procedure based on a simple standardized Brugger test aiming to achieve similar wear results as in a Parker Denison T6H20C pump test set up. The test conditions of a standard Brugger test are changed by taking a brass cylinder, reducing the normal load to 1 kg, increasing the test duration to 300 seconds, providing a well-defined surface roughness by using a 2,500 x grinding paper and perform 4 repetition tests to obtain a statistical more reliable measurement value. By using the new method it was possible to get a pre selection between pass and fail oils according to the wear properties without the necessity of performing an elaborated pump test. The preselection of hydraulic oils according to their anti-wear properties offers a huge cost saving potential for hydraulic oil developments

    Role of proline peptide bond isomerization in unfolding and refolding of ribonuclease.

    No full text

    Gaining insights into specific drug formulation additives for solubilizing a potential Anti-Alzheimer disease drug B4A1

    No full text
    The pharmacological profiles of small molecule drugs are often challenged by their poor water solubility. Sequence-defined peptides attached to poly(ethylene glycol) (PEG) offer opportunities to overcome these difficulties by acting as drug-specific formulation additives. The peptide-PEG conjugates enable specific, noncovalent drug binding via tailored peptide/drug interactions as well as provide water solubility and drug shielding by well-solvated PEG-blocks. A systematic set of specific solubilizers for B4A1 as a potential anti-Alzheimer disease drug is synthesized and variations involve the length of the PEG-blocks as well as the sequences of the peptidic drug-binding domain. The solubilizer/B4A1 complexes are studied in order to understand contributions of both PEG and peptide segments on drug payload capacities, drug/carrier aggregate sizes, and influences on inhibition of the Tau-protein aggregation in an in vitro assay
    corecore