105 research outputs found

    Moessbauer/XRF MIMOS Instrumentation and Operation During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii

    Get PDF
    Field testing and scientific investigations were conducted on the Mauna Kea Volcano, Hawaii, as part of the 2012 Moon and Mars Analog Mission Activities (MMAMA). Measurements were conducted using both stand-alone and rover-mounted instruments to determine the geophysical and geochemical properties of the field site, as well as provide operational constraints and science considerations for future robotic and human missions [1]. Reported here are the results from the two MIMOS instruments deployed as part of this planetary analog field test

    Visible and Near-IR Reflectance Spectra of Smectite Acquired Under Dry Conditions for Interpretation of Martian Surface Mineralogy

    Get PDF
    Visible and near-IR (VNIR) spectra from the MEx OMEGA and the MRO CRISM hyper-spectral imaging instruments have spectral features associated with the H2O molecule and M OH functional groups (M = Mg, Fe, Al, and Si). Mineralogical assignments of martian spectral features are made on the basis of laboratory VNIR spectra, which were often acquired under ambient (humid) conditions. Smectites like nontronite, saponite, and montmorillionite have interlayer H2O that is exchangeable with their environment, and we have acquired smectite reflectance spectra under dry environmental conditions for interpretation of martian surface mineralogy. We also obtained chemical, Moessbauer (MB), powder X-ray diffraction (XRD), and thermogravimetric (TG) data to understand variations in spectral properties. VNIR spectra were recorded in humid lab air at 25-35C, in a dynamic dry N2 atmosphere (50-150 ppmv H2O) after exposing the smectite samples (5 nontronites, 3 montmorillionites, and 1 saponite) to that atmosphere for up to approximately l000 hr each at 25-35C, approximately 105C, and approximately 215C, and after re-exposure to humid lab air. Heating at 105C and 215C for approximately 1000 hr is taken as a surrogate for geologic time scales at lower temperatures. Upon exposure to dry N2, the position and intensity of spectral features associated with M-OH were relatively insensitive to the dry environment, and the spectral features associated with H2O (e.g., approximately 1.90 micrometers) decreased in intensity and are sometimes not detectable by the end of the 215C heating step. The position and intensity of H2O spectral features recovered upon re-exposure to lab air. XRD data show interlayer collapse for the nontronites and Namontmorillionites, with the interlayer remaining collapsed for the latter after re-exposure to lab air. The interlayer did not collapse for the saponite and Ca-montmorillionite. TG data show that the concentration of H2O derived from structural OH was invariant to the dry N2 treatment for saponite and the montmorillionites, but the nontronites had additional structural OH after treatment. Upon exposure to dry N2, the VNIR spectra also acquired a red slope with decreasing albedo between approximately 0.4 and approximately 2.0 micrometers. The magnitude of the effects covaries with exposure time to dry N2 and heating temperature. Upon re-exposure to lab air, the slope and albedo do not completely recover to pre-exposure values. MB data show that these effects do not result from partial reduction of ferric to ferrous iron, and TG data show they do not result from loss of structural OH. Possible explanations include formation of small clusters of (superparamagnetic) ferric oxide and reduced smectite crystallinity. The difference in spectral properties between spectra acquired in humid lab air and under dry conditions are consequential for interpretation of CRISM and OMEGA spectra. For example, nontronite by itself and not nontronite plus ferrihydrite can account for the red spectral slope in martian spectra where nontronite is indicated by the Fe-OH spectral features

    Chemical and Mineralogical Characterization of Acid-Sulfate Alteration of Basaltic Material on Mauna Kea Volcano, Hawaii: Jarosite and Hydrated Halloysite

    Get PDF
    Sulfates have been identified on the martian surface during robotic surface exploration and by orbital remote sensing. Measurements at Meridiani Planum (MP) by the Alpha-Particle X-ray Spectrometer (APXS) and Mossbauer (MB) instruments on the Mars Exploration Rover Opportunity document the presence of a ubiquitous sulfate-rich outcrop (20-40% SO3) that has jarosite as an anhydrous Fe3+-sulfate [1- 3]. The presence of jarosite implies a highly acidic (pH <3) formation environment [4]. Jarosite and other sulfate minerals, including kieserite, gypsum, and alunite have also been identified in several locations in orbital remote sensing data from the MEx OMEGA and MRO CRISM instruments [e.g. 5-8]. Acid sulfate weathering of basaltic materials is an obvious pathway for formation of sulfate-bearing phases on Mars [e.g. 4, 9, 10]. In order to constrain acid-sulfate pathways on Mars, we are studying the mineralogical and chemical manifestations of acid-sulfate alteration of basaltic compositions in terrestrial environments. We have previously shown that acidsulfate alteration of tephra under hydrothermal conditions on the Puu Poliahu cone (summit region of Mauna Kea volcano, Hawaii) resulted in jarosite and alunite as sulfate-bearing alteration products [11-14]. Other, more soluble, sulfates may have formed, but were leached away by rain and melting snow. Acidsulfate processes on Puu Poliahu also formed hematite spherules similar (except in size) to the hematite spherules observed at MP as an alteration product [14]. Phyllosilicates, usually smectite }minor kaolinite are also present as alteration products [13]. We discuss here an occurrence of acid-sulfate alteration on Mauna Kea Volcano (Hawaii). We report VNIR spectra (0.35-2.5 microns ASD spectrometer), Mossbauer spectra (MER-like ESPI backscatter spectrometer), powder XRD (PANalytical), and major element chemical compositions (XRF with LOI and Fe redox) for comparison to similar data acquired or to be acquired by MRO-CRISM and MEx OMEGA, MERMB, MSL-CheMin, and MER and MSL APXS, respectively

    Integration of an Earth-Based Science Team During Human Exploration of Mars

    Get PDF
    NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. A mission was undertaken in 2016, NEEMO 21, at the Aquarius undersea research habitat. During the mission, the effects of varied oper-ations concepts with representative communication latencies as-sociated with Mars missions were studied. Six subjects were weighed out to simulate partial gravity and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) who provided input and direction during exploration activities. Exploration traverses were planned in advance based on precursor data collected. Subjects completed science-related tasks including presampling surveys and marine-science-based sampling during saturation dives up to 4 hours in duration that simulated extravehicular activity (EVA) on Mars. A communication latency of 15 minutes in each direction between space and ground was simulated throughout the EVAs. Objective data included task completion times, total EVA time, crew idle time, translation time, ST assimilation time (defined as time available for the science team to discuss, to review and act upon data/imagery after they have been collected and transmitted to the ground). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. In addition, comments from both the crew and the ST were captured during the post-mission debrief. Here, we focus on the acceptability of the operations concepts studied and the capabilities most enhancing or enabling in the operations concept. The importance and challenges of designing EVA time-lines to account for the length of the task, level of interaction with the ground that is required/desired, and communication latency, are discussed

    Flight Readiness of Mochii ISS-NL Portable Spectroscopic Electron Microscope

    Get PDF
    Electron microscopes (EMs), are workhorse tools serving diverse fields such as materials science, biological science, and engineering. Scanning EMs (SEMs) in particular enable high magnification study and pinpoint chemical analyses of structures down to the nanoscale by providing a powerful blend of strong optical scattering, high native resolution, large depth of focus, and energy-dispersive X-ray spectroscopy (EDS). Mochii is the worlds smallest production electron microscope, scheduled to travel to the International Space Station (ISS) this spring where it will serve as an ISS National Laboratory (ISSNL) microgravity facility on successful demonstration. We previously reported on progress preparing Mochii for space flight, in particular flight integration verifications and science application testing. These included standard integration testing such as electromagnetic interference and flight vibration, and extend to unique functional testing such as magnetic susceptibility and extreme analog environment testing under the sea. Presently, Mochii payload flight hardware has completed testing and was handed over to NASAs ISS payload processing facility in Houston. It will make its way to the the east coast for launch currently scheduled on Space-X CRS-20 for Mission increment 62 in March 2020

    Arrhythmic risk biomarkers for the assessment of drug cardiotoxicity: from experiments to computer simulations

    Get PDF
    In this paper, we illustrate how advanced computational modelling and simulation can be used to investigate drug-induced effects on cardiac electrophysiology and on specific biomarkers of pro-arrhythmic risk. To do so, we first perform a thorough literature review of proposed arrhythmic risk biomarkers from the ionic to the electrocardiogram levels. The review highlights the variety of proposed biomarkers, the complexity of the mechanisms of drug-induced pro-arrhythmia and the existence of significant animal species differences in drug-induced effects on cardiac electrophysiology. Predicting drug-induced pro-arrhythmic risk solely using experiments is challenging both preclinically and clinically, as attested by the rise in the cost of releasing new compounds to the market. Computational modelling and simulation has significantly contributed to the understanding of cardiac electrophysiology and arrhythmias over the last 40 years. In the second part of this paper, we illustrate how state-of-the-art open source computational modelling and simulation tools can be used to simulate multi-scale effects of drug-induced ion channel block in ventricular electrophysiology at the cellular, tissue and whole ventricular levels for different animal species. We believe that the use of computational modelling and simulation in combination with experimental techniques could be a powerful tool for the assessment of drug safety pharmacology

    Water in the Cratonic Mantle: Insights from FTIR Data on Lac De Gras Xenoliths (Slave Craton, Canada)

    Get PDF
    The mantle lithosphere beneath the cratonic part of continents is the deepest (> 200 km) and oldest (>2-3 Ga) on Earth, remaining a conundrum as to how these cratonic roots could have resisted delamination by asthenospheric convection over time. Water, or trace H incorporated in mineral defects, could be a key player in the evolution of continental lithosphere because it influences melting and rheology of the mantle. Mantle xenoliths from the Lac de Gras kimberlite in the Slave craton were analyzed by FTIR. The cratonic mantle beneath Lac de Gras is stratified with shallow (<145 km) oxidized ultradepleted peridotites and pyroxenites with evidence for carbonatitic metasomatism, underlain by reduced and less depleted peridotites metasomatized by kimberlite melts. Peridotites analyzed so far have H O contents in ppm weight of 7-100 in their olivines, 58 to 255 in their orthopyroxenes (opx), 11 to 84 in their garnet, and 139 in one clinopyroxene. A pyroxenite contains 58 ppm H2O in opx and 5 ppm H2O in its olivine and garnet. Olivine and garnet from the deep peridotites have a range of water contents extending to higher values than those from the shallow ones. The FTIR spectra of olivines from the shallow samples have more prominent Group II OH bands compared to the olivines from the deep samples, consistent with a more oxidized mantle environment. The range of olivine water content is similar to that observed in Kaapvaal craton peridotites at the same depths (129-184 km) but does not extend to as high values as those from Udachnaya (Siberian craton). The Slave, Kaapvaal and Siberian cratons will be compared in terms of water content distribution, controls and role in cratonic root longevity

    Field Camp for Astronauts: NASA's Geoscience Training Program for Planetary Exploration

    Get PDF
    Fifty years ago Apollo astronauts walked on the Moon to explore the geology and collect samples for Earth return. Several authors have discussed the strategic planning and training that enabled the Apollo successes, and assembled recommendations regarding todays lunar science objectives and astronaut training required to achieve those science goals. Since the 1980s, geoscience training for astronauts focused on observing the Earth from orbit. Today, we are building a geoscience training program to support informed Earth observations as well as the exploration culture for future human missions to the Moon and Mars. Our team partnered with JSCs crew training and astronaut offices to develop our 4-week geoscience program for the 2017 astronaut class. Because the astronauts have a variety of professional backgrounds, we provide a broad introduction to Earth and planetary sciences. But our prime focus is 2 weeks of intensive field work, a methodology introduced with the 2013 astronaut class. We completed the first half of the training a field trip to observe hurricane deposits along Galveston Bay; keynotes by Apollo colleagues highlighting Apollo experiences; a tightly-integrated week of introductory geology in the classroom followed by a week of fieldwork in the Rio Grande del Norte National Monument. The classroom included interactive map exercises that allowed the students to progressively build a base map of the field area that they used as a starting point for their week-long mapping exercise. We divided the class into small mapping groups to conduct their observations, mapping and interpretation of the geology. In addition to learning geological field work, our field training provided the platform for practicing expeditionary leadership, a key skill set valued by NASA for astronaut crews. Next summer the capstone fieldwork for the 2017 astronauts will include both mapping and rock sampling. Throughout the mapping, the class will collect additional data to help inform field and sampling decisions using diagnostic field instruments that are being tested in analog settings for their operational efficacy for future planetary exploration

    Silicic volcanism on Mars evidenced by tridymite in high-SiO_2 sedimentary rock at Gale crater

    Get PDF
    Tridymite, a low-pressure, high-temperature (>870 Ā°C) SiO_2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has āˆ¼40 wt.% crystalline and āˆ¼60 wt.% X-ray amorphous material and a bulk composition with āˆ¼74 wt.% SiO_2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (āˆ¼17 wt.% of bulk sample), tridymite (āˆ¼14 wt.%), sanidine (āˆ¼3 wt.%), cation-deficient magnetite (āˆ¼3 wt.%), cristobalite (āˆ¼2 wt.%), and anhydrite (āˆ¼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (āˆ¼39 wt.% opal-A and/or high-SiO_2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chloridesāˆ’perchloratesāˆ’chlorates), and has minor TiO_2 and Fe_2O_3T oxides (āˆ¼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a ā€œLake Galeā€ catchment environment can account for Buckskinā€™s tridymite, cristobalite, feldspar, and any residual high-SiO_2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO_2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill

    Silicic volcanism on Mars evidenced by tridymite in high-SiO_2 sedimentary rock at Gale crater

    Get PDF
    Tridymite, a low-pressure, high-temperature (>870 Ā°C) SiO_2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has āˆ¼40 wt.% crystalline and āˆ¼60 wt.% X-ray amorphous material and a bulk composition with āˆ¼74 wt.% SiO_2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (āˆ¼17 wt.% of bulk sample), tridymite (āˆ¼14 wt.%), sanidine (āˆ¼3 wt.%), cation-deficient magnetite (āˆ¼3 wt.%), cristobalite (āˆ¼2 wt.%), and anhydrite (āˆ¼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (āˆ¼39 wt.% opal-A and/or high-SiO_2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chloridesāˆ’perchloratesāˆ’chlorates), and has minor TiO_2 and Fe_2O_3T oxides (āˆ¼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a ā€œLake Galeā€ catchment environment can account for Buckskinā€™s tridymite, cristobalite, feldspar, and any residual high-SiO_2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO_2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill
    • ā€¦
    corecore