34 research outputs found

    High-contrast imaging constraints on gas giant planet formation - The Herbig Ae/Be star opportunity

    Full text link
    Planet formation studies are often focused on solar-type stars, implicitly considering our Sun as reference point. This approach overlooks, however, that Herbig Ae/Be stars are in some sense much better targets to study planet formation processes empirically, with their disks generally being larger, brighter and simply easier to observe across a large wavelength range. In addition, massive gas giant planets have been found on wide orbits around early type stars, triggering the question if these objects did indeed form there and, if so, by what process. In the following I briefly review what we currently know about the occurrence rate of planets around intermediate mass stars, before discussing recent results from Herbig Ae/Be stars in the context of planet formation. The main emphasis is put on spatially resolved polarized light images of potentially planet forming disks and how these images - in combination with other data - can be used to empirically constrain (parts of) the planet formation process. Of particular interest are two objects, HD100546 and HD169142, where, in addition to intriguing morphological structures in the disks, direct observational evidence for (very) young planets has been reported. I conclude with an outlook, what further progress we can expect in the very near future with the next generation of high-contrast imagers at 8-m class telescopes and their synergies with ALMA.Comment: Accepted by Astrophysics and Space Science as invited short review in special issue about Herbig Ae/Be stars; 12 pages incl. 5 figures, 2 tables and reference

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    An efficient strategy for evaluating new non-invasive screening tests for colorectal cancer: the guiding principles.

    Get PDF
    New screening tests for colorectal cancer (CRC) are rapidly emerging. Conducting trials with mortality reduction as the end point supporting their adoption is challenging. We re-examined the principles underlying evaluation of new non-invasive tests in view of technological developments and identification of new biomarkers. A formal consensus approach involving a multidisciplinary expert panel revised eight previously established principles. Twelve newly stated principles emerged. Effectiveness of a new test can be evaluated by comparison with a proven comparator non-invasive test. The faecal immunochemical test is now considered the appropriate comparator, while colonoscopy remains the diagnostic standard. For a new test to be able to meet differing screening goals and regulatory requirements, flexibility to adjust its positivity threshold is desirable. A rigorous and efficient four-phased approach is proposed, commencing with small studies assessing the test's ability to discriminate between CRC and non-cancer states (phase I), followed by prospective estimation of accuracy across the continuum of neoplastic lesions in neoplasia-enriched populations (phase II). If these show promise, a provisional test positivity threshold is set before evaluation in typical screening populations. Phase III prospective studies determine single round intention-to-screen programme outcomes and confirm the test positivity threshold. Phase IV studies involve evaluation over repeated screening rounds with monitoring for missed lesions. Phases III and IV findings will provide the real-world data required to model test impact on CRC mortality and incidence. New non-invasive tests can be efficiently evaluated by a rigorous phased comparative approach, generating data from unbiased populations that inform predictions of their health impact

    Biomarkers of Multiple Sclerosis

    Get PDF
    The search for an ideal multiple sclerosis biomarker with good diagnostic value, prognostic reference and an impact on clinical outcome has yet to be realized and is still ongoing. The aim of this review is to establish an overview of the frequent biomarkers for multiple sclerosis that exist to date. The review summarizes the results obtained from electronic databases, as well as thorough manual searches. In this review the sources and methods of biomarkers extraction are described; in addition to the description of each biomarker, determination of the prognostic, diagnostic, disease monitoring and treatment response values besides clinical impact they might possess. We divided the biomarkers into three categories according to the achievement method: laboratory markers, genetic-immunogenetic markers and imaging markers. We have found two biomarkers at the time being considered the gold standard for MS diagnostics. Unfortunately, there does not exist a single solitary marker being able to present reliable diagnostic value, prognostic value, high sensitivity and specificity as well as clinical impact. We need more studies to find the best biomarker for MS.publishersversionPeer reviewe

    Shear Localization in Dynamic Deformation: Microstructural Evolution

    Full text link

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link

    The Origin of Mercury

    Get PDF
    Mercury’s unusually high mean density has always been attributed to special circumstances that occurred during the formation of the planet or shortly thereafter, and due to the planet’s close proximity to the Sun. The nature of these special circumstances is still being debated and several scenarios, all proposed more than 20 years ago, have been suggested. In all scenarios, the high mean density is the result of severe fractionation occurring between silicates and iron. It is the origin of this fractionation that is at the centre of the debate: is it due to differences in condensation temperature and/or in material characteristics (e.g. density, strength)? Is it because of mantle evaporation due to the close proximity to the Sun? Or is it due to the blasting off of the mantle during a giant impact? In this paper we investigate, in some detail, the fractionation induced by a giant impact on a proto-Mercury having roughly chondritic elemental abundances. We have extended the previous work on this hypothesis in two significant directions. First, we have considerably increased the resolution of the simulation of the collision itself. Second, we have addressed the fate of the ejecta following the impact by computing the expected reaccretion timescale and comparing it to the removal timescale from gravitational interactions with other planets (essentially Venus) and the Poynting–Robertson effect. To compute the latter, we have determined the expected size distribution of the condensates formed during the cooling of the expanding vapor cloud generated by the impact. We find that, even though some ejected material will be reaccreted, the removal of the mantle of proto-Mercury following a giant impact can indeed lead to the required long-term fractionation between silicates and iron and therefore account for the anomalously high mean density of the planet. Detailed coupled dynamical–chemical modeling of this formation mechanism should be carried out in such a way as to allow explicit testing of the giant impact hypothesis by forthcoming space missions (e.g. MESSENGER and BepiColombo)
    corecore