326 research outputs found
Recommended from our members
Chemistry and valency spectra of Chromite in SNC meteorites
Shergottite chromite core mantle sources were Al-poor, Fe-rich, low Fe^{3+}/Fe^{2+}, fO_{2} 1 to 4 unit
The HR 4796A Debris System: Discovery of Extensive Exo-Ring Dust Material
The optically and IR bright, and starlight-scattering, HR 4796A ring-like
debris disk is one of the most (and best) studied exoplanetary debris systems.
The presence of a yet-undetected planet has been inferred (or suggested) from
the narrow width and inner/outer truncation radii of its r = 1.05" (77 au)
debris ring. We present new, highly sensitive, Hubble Space Telescope (HST)
visible-light images of the HR 4796A circumstellar debris system and its
environment over a very wide range of stellocentric angles from 0.32" (23 au)
to ~ 15" (1100 au). These very high contrast images were obtained with the
Space Telescope Imaging Spectrograph (STIS) using 6-roll PSF-template
subtracted coronagraphy suppressing the primary light of HR 4796A and using
three image plane occulters and simultaneously subtracting the background light
from its close angular proximity M2.5V companion. The resulting images
unambiguously reveal the debris ring embedded within a much larger,
morphologically complex, and bi-axially asymmetric exoring scattering
structure. These images at visible wavelengths are sensitive to, and map, the
spatial distribution, brightness, and radial surface density of micron size
particles over 5 dex in surface brightness. These particles in the exo-ring
environment may be unbound from the system and interacting with the local ISM.
Herein we present a new morphological and photometric view of the larger than
prior seen HR 4796A exoplanetary debris system with sensitivity to small
particles at stellocentric distances an order of magnitude greater than has
previously been observed.Comment: 28 pages, 17 figures, accepted for publication in the Astronomical
Journal 21 December 201
The Case of AB Aurigae's Disk in Polarized Light: Is There Truly a Gap?
Using the NICMOS coronagraph, we have obtained high-contrast 2.0 micron
imaging polarimetry and 1.1 micron imaging of the circumstellar disk around AB
Aurigae on angular scales of 0.3-3 arcsec (40-550 AU). Unlike previous
observations, these data resolve the disk in both total and polarized
intensity, allowing accurate measurement of the spatial variation of
polarization fraction across the disk. Using these observations we investigate
the apparent "gap" in the disk reported by Oppenheimer et al. 2008. In
polarized intensity, the NICMOS data closely reproduces the morphology seen by
Oppenheimer et al., yet in total intensity we find no evidence for a gap in
either our 1.1 or 2.0 micron images. We find instead that region has lower
polarization fraction, without a significant decrease in total scattered light,
consistent with expectations for back-scattered light on the far side of an
inclined disk. Radiative transfer models demonstrate this explanation fits the
observations. Geometrical scattering effects are entirely sufficient to explain
the observed morphology without any need to invoke a gap or protoplanet at that
location.Comment: Accepted to ApJ Letter
The HD 163296 Circumstellar Disk in Scattered Light: Evidence of Time-Variable Self-Shadowing
We present the first multicolor view of the scattered light disk of the Herbig Ae star HD 163296, based on coronagraphic observations from the Hubble Space Telescope Advanced Camera for Surveys (HST ACS). Radial profile fits of the surface brightness along the disk's semimajor axis indicate that the disk is not continuously flared, and extends to ~540 AU. The disk's color (V − I) = 1.1 at a radial distance of 3.5'' is redder than the observed stellar color (V − I) = 0.15. This red disk color might be indicative of either an evolution in the grain size distribution (i.e., grain growth) and/or composition, both of which would be consistent with the observed nonflared geometry of the outer disk. We also identify a single ansa morphological structure in our F435W ACS data, which is absent from earlier epoch F606W and F814W ACS data, but corresponds to one of the two ansae observed in archival HST Space Telescope Imaging Spectrograph (STIS) coronagraphic data. Following transformation to similar bandpasses, we find that the scattered light disk of HD 163296 is 1 mag arcsec^(−2) fainter at 3.5'' in the STIS data than in the ACS data. Moreover, variations are seen in (1) the visibility of the ansa(e) structures, (2) the relative surface brightness of the ansa(e) structures, and (3) the (known) intrinsic polarization of the system. These results indicate that the scattered light from the HD 163296 disk is variable. We speculate that the inner disk wall, which Sitko et al. suggests has a variable scale height as diagnosed by near-IR SED variability, induces variable self-shadowing of the outer disk. We further speculate that the observed surface brightness variability of the ansa(e) structures may indicate that the inner disk wall is azimuthally asymmetric
Probing for Exoplanets Hiding in Dusty Debris Disks: Disk Imaging, Characterization, and Exploration with HST/STIS Multi-Roll Coronagraphy
Spatially resolved scattered-light images of circumstellar (CS) debris in
exoplanetary systems constrain the physical properties and orbits of the dust
particles in these systems. They also inform on co-orbiting (but unseen)
planets, systemic architectures, and forces perturbing starlight-scattering CS
material. Using HST/STIS optical coronagraphy, we have completed the
observational phase of a program to study the spatial distribution of dust in
ten CS debris systems, and one "mature" protoplanetrary disk all with HST
pedigree, using PSF-subtracted multi-roll coronagraphy. These observations
probe stellocentric distances > 5 AU for the nearest stars, and simultaneously
resolve disk substructures well beyond, corresponding to the giant planet and
Kuiper belt regions in our Solar System. They also disclose diffuse very
low-surface brightness dust at larger stellocentric distances. We present new
results inclusive of fainter disks such as HD92945 confirming, and better
revealing, the existence of a narrow inner debris ring within a larger diffuse
dust disk. Other disks with ring-like sub-structures, significant asymmetries
and complex morphologies include: HD181327 with a posited spray of ejecta from
a recent massive collision in an exo-Kuiper belt; HD61005 suggested interacting
with the local ISM; HD15115 & HD32297, discussed also in the context of
environmental interactions. These disks, and HD15745, suggest debris system
evolution cannot be treated in isolation. For AU Mic's edge-on disk,
out-of-plane surface brightness asymmetries at > 5 AU may implicate one or more
planetary perturbers. Time resolved images of the MP Mus proto-planetary disk
provide spatially resolved temporal variability in the disk illumination. These
and other new images from our program enable direct inter-comparison of the
architectures of these exoplanetary debris systems in the context of our own
Solar System.Comment: 109 pages, 43 figures, accepted for publication in the Astronomical
Journa
The shadow knows: using shadows to investigate the structure of the pretransitional disk of HD 100453
We present GPI polarized intensity imagery of HD 100453 in Y-, J-, and K1
bands which reveals an inner gap ( au), an outer disk ( au) with
two prominent spiral arms, and two azimuthally-localized dark features also
present in SPHERE total intensity images (Wagner 2015). SED fitting further
suggests the radial gap extends to au. The narrow, wedge-like shape of the
dark features appears similar to predictions of shadows cast by a inner disk
which is misaligned with respect to the outer disk. Using the Monte Carlo
radiative transfer code HOCHUNCK3D (Whitney 2013), we construct a model of the
disk which allows us to determine its physical properties in more detail. From
the angular separation of the features we measure the difference in inclination
between the disks 45, and their major axes, PA = 140 east
of north for the outer disk and 100for the inner disk. We find an
outer disk inclination of from face-on in broad agreement
with the Wagner 2015 measurement of 34. SPHERE data in J- and H-bands
indicate a reddish disk which points to HD 100453 evolving into a young debris
disk
Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses.
Drought is the most important environmental stress limiting crop yields. The C4 cereal sorghum [Sorghum bicolor (L.) Moench] is a critical food, forage, and emerging bioenergy crop that is notably drought-tolerant. We conducted a large-scale field experiment, imposing preflowering and postflowering drought stress on 2 genotypes of sorghum across a tightly resolved time series, from plant emergence to postanthesis, resulting in a dataset of nearly 400 transcriptomes. We observed a fast and global transcriptomic response in leaf and root tissues with clear temporal patterns, including modulation of well-known drought pathways. We also identified genotypic differences in core photosynthesis and reactive oxygen species scavenging pathways, highlighting possible mechanisms of drought tolerance and of the delayed senescence, characteristic of the stay-green phenotype. Finally, we discovered a large-scale depletion in the expression of genes critical to arbuscular mycorrhizal (AM) symbiosis, with a corresponding drop in AM fungal mass in the plants' roots
- …