30 research outputs found

    The phosphoinositide PI(3,5)P2 inhibits the activity of plant NHX proton/potassium antiporters: Advantages of a novel electrophysiological approach

    Get PDF
    In the present work, we discuss the way in which the parallel application of the patch-clamp technique and the 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) fluorescence detection for recording luminal proton changes allows the functional characterization of nonelectrogenic potassium/proton vacuolar antiporters of the NHX (Na+/H+ exchanger) family. Moreover, we review the functional role of the tonoplast-specific phosphoinositide PI(3,5)P2, able to simultaneously inhibit the activity of NHXs and CLC-a transporters, whose coordinated action can play an important role in the water balance of plant cells

    I-J loop involvement in the pharmacological profile of CLC-K channels expressed in Xenopus oocytes

    Get PDF
    CLC-K chloride channels and their subunit, barttin, are crucial for renal NaCl reabsorption and for inner ear endolymph production. Mutations in CLC-Kb and barttin cause Bartter syndrome. Here, we identified two adjacent residues, F256 and N257, that when mutated hugely alter in Xenopus oocytes CLC-Ka's biphasic response to niflumic acid, a drug belonging to the fenamate class, with F256A being potentiated 37-fold and N257A being potently blocked with a KD~1ÎĽM. These residues are localized in the same extracellular I-J loop which harbors a regulatory Ca(2+) binding site. This loop thus can represent an ideal and CLC-K specific target for extracellular ligands able to modulate channel activity. Furthermore, we demonstrated the involvement of the barttin subunit in the NFA potentiation. Indeed the F256A mutation confers onto CLC-K1 a transient potentiation induced by NFA which is found only when CLC-K1/F256A is co-expressed with barttin. Thus, in addition to the role of barttin in targeting and gating, the subunit participates in the pharmacological modulation of CLC-K channels and thus represents a further target for potential drugs

    Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters

    Get PDF
    open18siA distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.openFesta M.; Minicozzi V.; Boccaccio A.; Lagostena L.; Gradogna A.; Qi T.; Costa A.; Larisch N.; Hamamoto S.; Pedrazzini E.; Milenkovic S.; Scholz-Starke J.; Ceccarelli M.; Vitale A.; Dietrich P.; Uozumi N.; Gambale F.; Carpaneto A.Festa, M.; Minicozzi, V.; Boccaccio, A.; Lagostena, L.; Gradogna, A.; Qi, T.; Costa, A.; Larisch, N.; Hamamoto, S.; Pedrazzini, E.; Milenkovic, S.; Scholz-Starke, J.; Ceccarelli, M.; Vitale, A.; Dietrich, P.; Uozumi, N.; Gambale, F.; Carpaneto, A

    Dissecting a regulatory calcium-binding site of CLC-K kidney chloride channels

    Get PDF
    The kidney and inner ear CLC-K chloride channels, which are involved in salt absorption and endolymph production, are regulated by extracellular Ca2+ in the millimolar concentration range. Recently, Gradogna et al. (2010. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201010455) identified a pair of acidic residues (E261 and D278) located in the loop between helices I and J as forming a putative intersubunit Ca2+-binding site in hClC-Ka. In this study, we sought to explore the properties of the binding site in more detail. First, we verified that the site is conserved in hClC-Kb and rClC-K1. In addition, we could confer Ca2+ sensitivity to the Torpedo marmorata ClC-0 channel by exchanging its I–J loop with that from ClC-Ka, demonstrating a direct role of the loop in Ca2+ binding. Based on a structure of a bacterial CLC and a new sequence alignment, we built homology models of ClC-Ka. The models suggested additional amino acids involved in Ca2+ binding. Testing mutants of these residues, we could restrict the range of plausible models and positively identify two more residues (E259 and E281) involved in Ca2+ coordination. To investigate cation specificity, we applied extracellular Zn2+, Mg2+, Ba2+, Sr2+, and Mn2+. Zn2+ blocks ClC-Ka as well as its Ca2+-insensitive mutant, suggesting that Zn2+ binds to a different site. Mg2+ does not activate CLC-Ks, but the channels are activated by Ba2+, Sr2+, and Mn2+ with a rank order of potency of Ca2+ > Ba2+ > Sr2+ = Mn2+ for the human CLC-Ks. Dose–response analysis indicates that the less potent Ba2+ has a lower affinity rather than a lower efficacy. Interestingly, rClC-K1 shows an altered rank order (Ca2+ > Sr2+ >> Ba2+), but homology models suggest that residues outside the I–J loop are responsible for this difference. Our detailed characterization of the regulatory Ca2+-binding site provides a solid basis for the understanding of the physiological modulation of CLC-K channel function in the kidney and inner ear

    Beyond the patch-clamp resolution:functional activity of non-electrogenic vacuolar NHX proton/potassium antiporters and inhibition by phosphoinositides

    No full text
    reserved4We combined the patch-clamp technique with ratiometric fluorescence imaging using the proton-responsive BCECF dye as a luminal probe. Upon application of a steep cytosol-directed K+ gradient in Arabidopsis mesophyll vacuoles, a strong and reversible acidification of the vacuolar lumen was detected, while no associated electrical currents were observed, in agreement with electroneutral cation/H+ exchange. Our data show that this acidification was generated by NHX antiport activity, since: it did not distinguish between K+ and Na+ ions; it was sensitive to the NHX inhibitor benzamil; and it was completely absent in vacuoles from nhx1 nhx2 double knockout plants. Our data further show that NHX activity could be reversed, was voltage independent and specifically impaired by the low-abundance signaling lipid PI(3,5)P2 , which may regulate salt accumulation in plants by acting as a common messenger to coordinately shut down secondary active carriers responsible for cation and anion uptake inside the vacuole. Finally, we developed a theory based on thermodynamics, which supports the data obtained by our novel experimental approach. This work, therefore, represents a proof of principle that can be applied to the study of proton-dependent exchangers from plants and animals, which are barely detectable using conventional techniques.mixedGradogna, Antonella; Scholz-Starke, Joachim; Pardo, José M; Carpaneto, ArmandoGradogna, Antonella; Scholz-Starke, Joachim; Pardo, José M; Carpaneto, Armand

    Targeting kidney CLC-K channels: pharmacological profile in a human cell line versus Xenopus oocytes

    No full text
    CLC-K chloride channels play a crucial role in kidney physiology and genetic mutations, affecting their function are responsible for severe renal salt loss in humans. Thus, compounds that selectively bind to CLC-Ka and/or CLC-Kb channels and modulate their activity may have a significant therapeutic potential. Here, we compare the biophysical and pharmacological behaviors of human CLC-K channels expressed either in HEK293 cells or in Xenopus oocytes and we show that CLC-K channel properties are greatly influenced by the biochemical environment surrounding the channels. Indeed, in HEK293 cells the potentiating effect of niflumic acid (NFA) on CLC-Ka/barttin and CLC-Kb/barttin channels seems to be absent while the blocking efficacy of niflumic acid and benzofuran derivatives observed in oocytes is preserved. The NFA block does not seem to involve the accessory subunit barttin on CLC-K1 channels. In addition, the sensitivity of CLC-Ks to external Ca(2+) is reduced in HEK293 cells. Based on our findings, we propose that mammalian cell lines are a suitable expression system for the pharmacological profiling of CLC-Ks

    The Discovery of Naringenin as Endolysosomal Two-Pore Channel Inhibitor and Its Emerging Role in SARS-CoV-2 Infection

    No full text
    The flavonoid naringenin (Nar), present in citrus fruits and tomatoes, has been identified as a blocker of an emerging class of human intracellular channels, namely the two-pore channel (TPC) family, whose role has been established in several diseases. Indeed, Nar was shown to be effective against neoangiogenesis, a process essential for solid tumor progression, by specifically impairing TPC activity. The goal of the present review is to illustrate the rationale that links TPC channels to the mechanism of coronavirus infection, and how their inhibition by Nar could be an efficient pharmacological strategy to fight the current pandemic plague COVID-19
    corecore