29 research outputs found
Biorremediación de metales pesados por sulfidogénesis utilizando comunidades y microorganismos sulfato-reductores
Debido al incremento de las actividades minera y metalúrgica de los últimos tiempos, las industrias producen efluentes con altas concentraciones de metales y sulfatos, entre los que se incluyen los lixiviados de minerales, los desechos metalúrgicos y los drenajes ácidos de minas (DAM). Estos últimos, de gran impacto ambiental y socio-económico, se caracterizan por tener bajos valores de pH generalmente entre 2 y 3, y en algunos casos aun menores. Debido a esta última condición, la solubilidad de los metales pesados se incrementa presentándose en elevadas concentraciones junto con sulfatos, entre otros iones. Existen numerosas metodologías que se utilizan para el tratamiento de estos efluentes ácidos. El más utilizado consiste en el agregado de agentes neutralizantes que producen la precipitación de los metales como hidróxidos y el aumento del pH del efluente; pero tienen la desventaja de producir grandes cantidades de sedimentos de difícil disposición final, entre otras. La bioprecipitación es una metodología alternativa con posibilidades de usarse en la remediación de estos efluentes así como en otros casos de contaminaciones producidas por metales pesados. En la bioprecipitación se utilizan microorganismos capaces de generar metabolitos que precipitan con muchos de los metales pesados. Dentro de estos microorganismos, se destacan fundamentalmente los microorganismos sulfato-reductores (llamados genéricamente BSR porque la mayoría son bacterias) que bajo condiciones de anaerobiosis, son capaces de reducir el sulfato a sulfuro, utilizando compuestos orgánicos sencillos como dadores de electrones. La generación de sulfuro biogénico y de alcalinidad, son las claves para su aplicación en la precipitación de metales como los sulfuros metálicos correspondientes. La principal ventaja de este tratamiento biológico, es la reducción del volumen de los sedimentos que se generan respecto de aquellos cuando se utilizan hidróxidos y carbonatos. Además, bajo condiciones de anaerobiosis, los sulfuros metálicos son más insolubles que los hidróxidos o carbonatos correspondientes, reduciendo la biodisponibilidad de los metales pesados.
Uno de los grandes inconvenientes para la aplicación de este proceso es la gran sensibilidad de estos microorganismos a la acidez del medio, lo cual es frecuente en muchos efluentes industriales contaminados con metales pesados. Por esa razón, resulta relevante la búsqueda de nuevas especies y/o cepas, capaces de resistir bajos valores de pH y de todos modos ser eficaces en la precipitación de metales pesados. En los últimos tiempos se ha incrementado la búsqueda de microorganismos que habitan ambientes extremos debido a su potencial aplicación en procesos biotecnológicos como el mencionado anteriormente. Los ambientes volcánicos, como la zona geotermal de Caviahue-Copahue, suelen reunir estas condiciones y resultan ideales para el relevamiento y el aislamiento de comunidades sulfato-reductoras.Facultad de Ciencias Exacta
Manganese reduction and associated microbial communities in Antarctic surface sediments
The polar regions are the fastest warming places on earth. Accelerated glacial melting causes increased supply of nutrients such as metal oxides (i.e., iron and manganese oxides) into the surrounding environment, such as the marine sediments of Potter Cove, King George Island/Isla 25 de Mayo (West Antarctic Peninsula). Microbial manganese oxide reduction and the associated microbial communities are poorly understood in Antarctic sediments. Here, we investigated this process by geochemical measurements of in situ sediment pore water and by slurry incubation experiments which were accompanied by 16S rRNA sequencing. Members of the genus Desulfuromusa were the main responder to manganese oxide and acetate amendment in the incubations. Other organisms identified in relation to manganese and/or acetate utilization included Desulfuromonas, Sva1033 (family of Desulfuromonadales) and unclassified Arcobacteraceae. Our data show that distinct members of Desulfuromonadales are most active in organotrophic manganese reduction, thus providing strong evidence of their relevance in manganese reduction in permanently cold Antarctic sediments
Copahue geothermal system: a volcanic environment with rich extreme Prokaryotic biodiversity
The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.Centro de Investigación y Desarrollo en Fermentaciones Industriale
Copahue geothermal system: a volcanic environment with rich extreme Prokaryotic biodiversity
The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.Fil: Urbieta, María Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Fermentaciones Industriales. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Investigación y Desarrollo En Fermentaciones Industriales; ArgentinaFil: Willis Poratti, Graciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Fermentaciones Industriales. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Investigación y Desarrollo En Fermentaciones Industriales; ArgentinaFil: Segretin, Ana Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Fermentaciones Industriales. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Investigación y Desarrollo En Fermentaciones Industriales; ArgentinaFil: Gonzalez Toril, Elena. Consejo Superior de Investigaciones Cientificas; EspañaFil: Giaveno, María Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energias Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energias Alternativas; ArgentinaFil: Donati, Edgardo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Fermentaciones Industriales. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Investigación y Desarrollo En Fermentaciones Industriales; Argentin
Manganese reduction and associated microbial communities in Antarctic surface sediments
The polar regions are the fastest warming places on earth. Accelerated glacial melting causes increased supply of nutrients such as metal oxides (i.e., iron and manganese oxides) into the surrounding environment, such as the marine sediments of Potter Cove, King George Island/Isla 25 de Mayo (West Antarctic Peninsula). Microbial manganese oxide reduction and the associated microbial communities are poorly understood in Antarctic sediments. Here, we investigated this process by geochemical measurements of in situ sediment pore water and by slurry incubation experiments which were accompanied by 16S rRNA sequencing. Members of the genus Desulfuromusa were the main responder to manganese oxide and acetate amendment in the incubations. Other organisms identified in relation to manganese and/or acetate utilization included Desulfuromonas, Sva1033 (family of Desulfuromonadales) and unclassified Arcobacteraceae. Our data show that distinct members of Desulfuromonadales are most active in organotrophic manganese reduction, thus providing strong evidence of their relevance in manganese reduction in permanently cold Antarctic sediments.Fil: Wunder, Lea C.. Universitat Bremen; AlemaniaFil: Breuer, Inga. Universitat Bremen; AlemaniaFil: Willis Poratti, Graciana. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universitat Bremen; AlemaniaFil: Aromokeye, David A.. Universitat Bremen; AlemaniaFil: Henkel, Susann. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung; AlemaniaFil: Richter Heitmann, Tim. Universitat Bremen; AlemaniaFil: Yin, Xiuran. Universitat Bremen; AlemaniaFil: Friedrich, Michael W.. Universitat Bremen; Alemani
Draft Genome Sequence of the Sulfate-Reducing Bacterium <i>Desulfotomaculum copahuensis</i> Strain CINDEFI1 Isolated from the Geothermal Copahue System, Neuquén, Argentina
Desulfotomaculum copahuensis strain CINDEFI1 is a novel spore-forming sulfate-reducing bacterium isolated from the Copahue volcano area, Argentina. Here, we present its draft genome in which we found genes related with the anaerobic respiration of sulfur compounds similar to those present in the Copahue environment.Centro de Investigación y Desarrollo en Fermentaciones Industriale
Utilización de comunidades sulfato-reductoras en la precipitación de metales pesados : Influencia de los metales sobre las comunidades
Información extraída del sitio web del CINDEFIFacultad de Ciencias Exacta
Microbial diversity in acidic anaerobic sedimentsat the geothermal Caviahue-Copahue system, Argentina
The microbial diversity of sediment in the acidic Agua del Limón hot spring (located in the geothermal Caviahue-Copahue area, Argentina) was investigated using a combination of molecular and cultivation techniques, with particular emphasis on indigenous anaerobic prokaryotes. Bacteria involved in the iron (Acidithiobacillus ferrooxidans and Leptospirillum spp.) and sulfur (Acidithiobacillus spp., Thermotogales-like bacteria, Thiomonas sp., and Desulfurella sp.) cycles were identified in the clone library. Although no obvious sulfate-reducing bacteria were detected by culture-independent techniques, several isolates related to the mesophilic, sporeforming sulfate-reducer "Desulfobacillus acidavidus" strain CL4 were isolated on solid media incubated at both 30°C and 40°C. The 16S rRNA gene of another isolate showed 94% similarity to Desulfotomaculum thermobenzoicum. Enrichment culturFil: Willis Poratti, Graciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigación y Desarrollo En Fermentaciones Industriales (i); ArgentinaFil: Hedrich, Sabrina. Bangor University. School of Biological Sciences; Reino UnidoFil: Ñancucheo, Ivan. Bangor University. School of Biological Sciences; Reino UnidoFil: Johnson, D. Barrie. Bangor University. School of Biological Sciences; Reino UnidoFil: Donati, Edgardo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales (i); Argentin