77 research outputs found

    Association between Timing of Colonization and Risk of Developing Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae Infection in Hospitalized Patients

    Get PDF
    Colonization by KPC-producing Klebsiella pneumoniae (KPC-Kp) is associ ated with the risk of developing KPC-Kp infection. The impact of the time elapsed since a patient becomes colonized on this risk is not well known. An observational, prospec tive, longitudinal cohort study of colonized patients undergoing active rectal culture screening to rule out KPC-Kp colonization (July 2012 to November 2017). Patients with a positive culture at inclusion (colonized at start of follow-up) and those with a negative culture at inclusion who became colonized within 90 days (colonized during follow-up) were included in the analysis. CART analysis was used to dichotomize variables accord ing to their association with infection. Kaplan–Meier infection-free survival curves and the log-rank test were used for group comparisons. Logistic regression was used to identify variables associated with KPC-Kp infection. Among 1310 patients included, 166 were colonized at the end of follow-up. Forty-seven out of 118 patients colonized at start of follow-up developed infection (39.8%) versus 31 out of 48 patients colonized during follow-up (64.6%; P = 0.006). Variables associated with KPC-Kp infection in the logistic regression analysis were: colonization detection during follow-up (OR, 2.74; 95% CI, 1.07 to 7.04; P = 0.03), Giannella risk score (OR, 1.51; 95% CI, 1.32 to 1.73; P , 0.001), high-risk ward (OR, 4.77; 95% CI, 1.61 to 14.10; P = 0.005) and urological manipu lation after admission (OR, 3.69; 95% CI, 1.08 to 12.60; P = 0.04). In 25 out of 31 patients (80.6%) colonized during follow-up who developed KPC-Kp infection, infection appeared within 15 days after colonization. The risk of KPC-Kp infection was higher when coloni zation is recently acquired during hospitalization. In this prospective study, we con cluded that the timing of colonization was a factor to assess when considering empiri cal treatment for suspected KPC-Kp infection and prophylaxis or infection control

    Adherence to Human Colon Cells by Multidrug Resistant Enterobacterales Strains Isolated From Solid Organ Transplant Recipients With a Focus on Citrobacter freundii

    Get PDF
    Enterobacteria species are common causes of hospital-acquired infections, which are associated with high morbidity and mortality rates. Immunocompromised patients such as solid organ transplant (SOT) recipients are especially at risk because they are frequently exposed to antibiotics in the course of their treatments. In this work, we used a collection of 106 Escherichia coli, 78 Klebsiella pneumoniae, 25 Enterobacter spp., and 24 Citrobacter spp. multidrug resistant strains isolated from transplant patients (hepatic, renal or renal/pancreatic) in order to examine their ability to adhere in vitro to HT-29 human colon cells, and to determine if some adhesive characteristics are associated with prevalence and persistence of these strains. A total of 33 E. coli (31%), 21 K. pneumoniae (27%), 7 Enterobacter spp. (28%), and 5 Citrobacter spp. (21%), adhered to the colon epithelial cells. Two main adherence patterns were observed in the four species analyzed, diffuse adherence, and aggregative adherence. Under transmission electronic microscopy (TEM), most bacteria lacked visible fimbria on their surface, despite their strong adherence to epithelial cells. None of the strains studied was able to induce any cytotoxic effect on HT-29 cells although some of them strongly colonizing both cells and glass coverslips at high density. Some of the strains failed to adhere to the epithelial cells but adhered strongly to the cover-slide, which shows that microscopy studies are mandatory to elucidate the adherence of bacteria to epithelial cells in vitro, and that quantitative assays using colony forming unit (CFUs) counting need to be supplemented with pictures to determine definitively if a bacterial strain adheres or not to animal cells in vitro. We report here, for the first time, the aggregative adherence pattern of two multidrug resistant (MDR) Citrobacter freundii strains isolated from human patients; importantly, biofilm formation in Citrobacter is totally dependent on the temperature; strong biofilms were formed at room temperature (RT) but not at 37°C, which can play an important role in the colonization of hospital surfaces. In conclusion, our results show that there is a great variety of adhesion phenotypes in multidrug-resistant strains that colonize transplanted patients.This research was supported by Plan Nacional de I+D+i and Instituto de Salud Carlos III (Fondo de Investigaciones Sanitarias PI13/01191 to MF and PI16/01103 to JR-V), Subdirección General de Redes y Centros de Investigación Cooperativa, Spanish Ministry of Economy and Competitiveness, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0007, RD16/0016/0010, RD16/0016/0012, RD16/0016/0011, RD16/0016/0008, and RD16/0016/0002) co-financed by the European Development Regional Fund A way to achieve Europe ERDF, and Ministerio de Ciencia e Innovación, Acciones de dinamización ≪Redes de Investigación≫RED2018-102469-

    Molecular characterization of multidrug resistant Enterobacterales strains isolated from liver and kidney transplant recipients in Spain

    Get PDF
    The objective of this study was to analyse the mechanisms of resistance to carbapenems and other extended-spectrum-?-lactams and to determine the genetic relatedness of multidrug-resistant Enterobacterales (MDR-E) causing colonization or infection in solid-organ transplantation (SOT) recipients. Prospective cohort study in kidney (n= 142), liver (n= 98) or kidney/pancreas (n= 7) transplant recipients between 2014 and 2018 in seven Spanish hospitals. We included 531 MDR-E isolates from rectal swabs obtained before transplantation and weekly for 4?6 weeks after the procedure and 10 MDR-E from clinical samples related to an infection. Overall, 46.2% Escherichia coli, 35.3% Klebsiella pneumoniae, 6.5% Enterobacter cloacae, 6.3% Citrobacter freundii and 5.7% other species were isolated. The number of patients with MDR-E colonization post-transplantation (176; 71.3%) was 2.5-fold the number of patients colonized pre-transplantation (71; 28.7%). Extended spectrum ?-lactamases (ESBLs) and carbapenemases were detected in 78.0% and 21.1% of MDR-E isolates respectively. In nine of the 247 (3.6%) transplant patients, the microorganism causing an infection was the same strain previously cultured from surveillance rectal swabs. In our study we have observed a low rate of MDR-E infection in colonized patients 4?6 weeks post-transplantation. E. coli producing blaCTX-M-G1 and K. pneumoniae harbouring blaOXA-48 alone or with blaCTX-M-G1 were the most prevalent MDR-E colonization strains in SOT recipients.Acknowledgements The authors thank Mª Jesús Lecea and Laura Álvarez for technical assistance. Tis research was supported by ‘Plan Nacional de I+D+i and Instituto de Salud Carlos III (Fondo de Investigaciones Sanitarias 13/01191), Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, and the Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0007, RD16/0016/0010, RD16/0016/0012, RD16/0016/0011, RD16/0016/0008, RD16/0016/0002). Te study was co-fnanced by the European Development Regional Fund “A way to achieve Europe” and the Operative Program Intelligent Growth 2014‐2020

    Impact of an Antimicrobial Stewardship Program on the Incidence of Carbapenem Resistant Gram-Negative Bacilli: An Interrupted Time-Series Analysis

    Get PDF
    This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship.Carbapenem-resistant Gram-negative bacilli (CR-GNB) are a critical public health threat, and carbapenem use contributes to their spread. Antimicrobial stewardship programs (ASPs) have proven successful in reducing antimicrobial use. However, evidence on the impact of carbapenem resistance remains unclear. We evaluated the impact of a multifaceted ASP on carbapenem use and incidence of CR-GNB in a high-endemic hospital. An interrupted time-series analysis was conducted one year before and two years after starting the ASP to assess carbapenem consumption, CR-GNB incidence, death rates of sentinel events, and other variables potentially related to CR-GNB incidence. An intense reduction in carbapenem consumption occurred after starting the intervention and was sustained two years later (relative effect −83.51%; 95% CI −87.23 to −79.79). The incidence density of CR-GNB decreased by −0.915 cases per 1000 occupied bed days (95% CI −1.743 to −0.087). This effect was especially marked in CR-Klebsiella pneumoniae and CR-Escherichia coli, reversing the pre-intervention upward trend and leading to a relative reduction of −91.15% (95% CI −105.53 to −76.76) and −89.93% (95% CI −107.03 to −72.83), respectively, two years after starting the program. Death rates did not change. This ASP contributed to decreasing CR-GNB incidence through a sustained reduction in antibiotic use without increasing mortality rates.This research was funded by the Plan Nacional de I + D+i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0008; RD16/0016/0009) co-financed by European Development Regional Fund ‘A way to achieve Europe’ and Operative program intelligent Growth 2014–2020, which did not participate in the development of the program or the analysis of its results

    Deciphering mechanisms affecting cefepime-taniborbactam in vitro activity in carbapenemase-producing Enterobacterales and carbapenem-resistant Pseudomonas spp. isolates recovered during a surveillance study in Spain

    Get PDF
    [Purpose] To characterize the resistance mechanisms affecting the cefepime-taniborbactam combination in a collection of carbapenemase-producing Enterobacterales (CPE) and carbapenem-resistant Pseudomonas spp. (predominantly P. aeruginosa; CRPA) clinical isolates.[Methods] CPE (n = 247) and CRPA (n = 170) isolates were prospectively collected from patients admitted to 8 Spanish hospitals. Susceptibility to cefepime-taniborbactam and comparators was determined by broth microdilution. Cefepime-taniborbactam was the most active agent, inhibiting 97.6% of CPE and 67.1% of CRPA (MICs ≤ 8/4 mg/L). All isolates with cefepime-taniborbactam MIC > 8/4 mg/L (5 CPE and 52 CRPA) and a subset with MIC ≤ 8/4 mg/L (23 CPE and 24 CRPA) were characterized by whole genome sequencing.[Results] A reduced cefepime-taniborbactam activity was found in two KPC-ST307-Klebsiella pneumoniae isolates with altered porins [KPC-62-K. pneumoniae (OmpA, OmpR/EnvZ), KPC-150-K. pneumoniae (OmpK35, OmpK36)] and one each ST133-VIM-1-Enterobacter hormaechei with altered OmpD, OmpR, and OmpC; IMP-8-ST24-Enterobacter asburiae; and NDM-5-Escherichia coli with an YRIN-inserted PBP3 and a mutated PBP2. Among the P. aeruginosa (68/76), elevated cefepime-taniborbactam MICs were mostly associated with GES-5-ST235, OXA-2+VIM-2-ST235, and OXA-2+VIM-20-ST175 isolates also carrying mutations in PBP3, efflux pump (mexR, mexZ) and AmpC (mpl) regulators, and non-carbapenemase-ST175 isolates with AmpD-T139M and PBP3-R504C mutations. Overall, accumulation of these mutations was frequently detected among non-carbapenemase producers.[Conclusions] The reduced cefepime-taniborbactam activity among the minority of isolates with elevated cefepime-taniborbactam MICs is not only due to IMP carbapenemases but also to the accumulation of multiple resistance mechanisms, including PBP and porin mutations in CPE and chromosomal mutations leading to efflux pumps up-regulation, AmpC overexpression, and PBP modifications in P. aeruginosa.This study was also supported by Plan Nacional de I + D + i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Spanish Network for Research in Infectious Diseases [RD16/0016/0001, RD16/0016/0004, RD16/0016/0006, RD16/0016/0007, RD16/0016/0008, RD16/0016/0010, and REIPI RD16/0016/0011], CIBER de Enfermedades Infecciosas (CIBERINFEC) (CB21/13/00084), and co-financed by the European Development Regional Fund “A way to achieve Europe” (ERDF), Operative program Intelligent Growth 2014–2020. MH-G is supported by a postdoctoral contract by CIBERINFEC (CB21/13/00084).Peer reviewe

    Biofilm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients

    Get PDF
    Solid organ transplant (SOT) recipients are especially at risk of developing infections by multidrug resistant bacteria (MDR). In this study, the biofilm-forming capability of 209 MDR strains (Escherichia coli n = 106, Klebsiella pneumoniae n = 78, and Enterobacter spp. n = 25) isolated from rectal swabs in the first 48 hours before or after kidney (93 patients), liver (60 patients) or kidney/pancreas transplants (5 patients) were evaluated by using a microplate assay. Thirty-nine strains were isolated before transplant and 170 strains were isolated post-transplant. Overall, 16% of E. coli strains, 73% of K. pneumoniae strains and 4% Enterobacter strains showed moderate or strong biofilm production. Nine strains isolated from infection sites after transplantation were responsible of infections in the first month. Of these, 4 K. pneumoniae, 1 E. coli and 1 Enterobacter spp. strains isolated pre-transplant or post-transplant as colonizers caused infections in the post-transplant period. Our results suggest that in vitro biofilm formation could be an important factor for adhesion to intestine and colonization in MDR K. pneumoniae strains in SOT recipients, but this factor appears to be less important for MDR E. coli and Enterobacter spp.Acknowledgements: The authors thank Dr. Fidel Madrazo (Electron Microscopy Unit, Technology Support Services, IDIVAL) for helping with confocal microscopy. This research was supported by ‘Plan Nacional de I + D + i and Instituto de Salud Carlos III (Fondo de Investigaciones Sanitarias PI 13/01191 to MCF and PI 16/01103 to JRV), Subdirección General de Redes y Centros de Investigación Cooperativa, Spanish Ministry of Economy and Competitiveness, Spanish Network for Research in Infectious Diseases (REIPI RD12/0015) and (REIPI RD16/0016) co-financed by the European Development Regional Fund “A way to achieve Europe” ERDF

    The CARBA-MAP study: national mapping of carbapenemases in Spain (2014–2018)

    Get PDF
    Introduction:Infections caused by carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa, including isolates producing acquired carbapenemases, constitute a prevalent health problem worldwide. The primary objective of this study was to determine the distribution of the different carbapenemases among carbapenemase-producing Enterobacterales (CPE, specifically Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae complex, and Klebsiella aerogenes) and carbapenemase-producing P. aeruginosa (CPPA) in Spain from January 2014 to December 2018.Methods: A national, retrospective, cross-sectional multicenter study was performed. The study included the first isolate per patient and year obtained from clinical samples and obtained for diagnosis of infection in hospitalized patients. A structured questionnaire was completed by the participating centers using the REDCap platform, and results were analyzed using IBM SPSS Statistics 29.0.0.Results: A total of 2,704 carbapenemase-producing microorganisms were included, for which the type of carbapenemase was determined in 2692 cases: 2280 CPE (84.7%) and 412 CPPA (15.3%), most often using molecular methods and immunochromatographic assays. Globally, the most frequent types of carbapenemase in Enterobacterales and P. aeruginosa were OXA-48-like, alone or in combination with other enzymes (1,523 cases, 66.8%) and VIM (365 cases, 88.6%), respectively. Among Enterobacterales, carbapenemase-producing K. pneumoniae was reported in 1821 cases (79.9%), followed by E. cloacae complex in 334 cases (14.6%). In Enterobacterales, KPC is mainly present in the South and South-East regions of Spain and OXA-48-like in the rest of the country. Regarding P. aeruginosa, VIM is widely distributed all over the country. Globally, an increasing percentage of OXA-48-like enzymes was observed from 2014 to 2017. KPC enzymes were more frequent in 2017–2018 compared to 2014–2016.Discussion: Data from this study help to understand the situation and evolution of the main species of CPE and CPPA in Spain, with practical implications for control and optimal treatment of infections caused by these multi-drug resistant organisms

    Effectiveness of Fosfomycin for the Treatment of Multidrug-Resistant Escherichia coli Bacteremic Urinary Tract Infections

    Get PDF
    IMPORTANCE The consumption of broad-spectrum drugs has increased as a consequence of the spread of multidrug-resistant (MDR) Escherichia coli. Finding alternatives for these infections is critical, for which some neglected drugs may be an option. OBJECTIVE To determine whether fosfomycin is noninferior to ceftriaxone or meropenem in the targeted treatment of bacteremic urinary tract infections (bUTIs) due to MDR E coli. DESIGN, SETTING, AND PARTICIPANTS This multicenter, randomized, pragmatic, open clinical trial was conducted at 22 Spanish hospitals from June 2014 to December 2018. Eligible participants were adult patients with bacteremic urinary tract infections due to MDR E coli; 161 of 1578 screened patients were randomized and followed up for 60 days. Data were analyzed in May 2021. INTERVENTIONS Patients were randomized 1 to 1 to receive intravenous fosfomycin disodium at 4 g every 6 hours (70 participants) or a comparator (ceftriaxone or meropenem if resistant; 73 participants) with the option to switch to oral fosfomycin trometamol for the fosfomycin group or an active oral drug or pa renteral ertapenem for the comparator group after 4 days. MAIN OUTCOMES AND MEASURES The primary outcome was clinical and microbiological cure (CMC) 5 to 7 days after finalization of treatment; a noninferiority margin of 7% was considered. RESULTS Among 143 patients in the modified intention-to-treat population (median [IQR] age, 72 [62-81] years; 73 [51.0%] women), 48 of 70 patients (68.6%) treated with fosfomycin and 57 of 73 patients (78.1%) treated with comparators reached CMC (risk difference, -9.4 percentage points; 1-sided 95% CI, -21.5 to infinity percentage points; P = .10). While clinical or microbiological failure occurred among 10 patients (14.3%) treated with fosfomycin and 14 patients (19.7%) treated with comparators (risk difference, -5.4 percentage points; 1-sided 95% CI. -infinity to 4.9; percentage points; P = .19), an increased rate of adverse event-related discontinuations occurred with fosfomycin vs comparators (6 discontinuations [8.5%] vs 0 discontinuations; P = .006). In an exploratory analysis among a subset of 38 patients who underwent rectal colonization studies, patients treated with fosfomycin acquired a new ceftriaxone-resistant or meropenem-resistant gram-negative bacteria at a decreased rate compared with patients treated with comparators (0 of 21 patients vs 4 of 17 patients [23.5%]; 1-sided P = .01). CONCLUSIONS AND RELEVANCE This study found that fosfomycin did not demonstrate noninferiority to comparators as targeted treatment of bUTI from MDR E coli; this was due to an increased rate of adverse event-related discontinuations. This finding suggests that fosfomycin may be considered for selected patients with these infections
    corecore