220 research outputs found
Identification of the Genomic Insertion Site of the Thyroid Peroxidase Promoter–Cre Recombinase Transgene Using a Novel, Efficient, Next-Generation DNA Sequencing Method
Background: It can be useful to know the transgene insertion site in transgenic mice for a variety of reasons, but determining the insertion site generally is a time consuming, expensive, and laborious task. Methods: A simple method is presented to determine transgene insertion sites that combines the enrichment of a sequencing library by polymerase chain reaction (PCR) for sequences containing the transgene, followed by next-generation sequencing of the enriched library. This method was applied to determine the site of integration of the thyroid peroxidase promoter?Cre recombinase mouse transgene that is commonly used to create thyroid-specific gene deletions. Results: The insertion site was found to be between bp 12,372,316 and 12,372,324 on mouse chromosome 9, with the nearest characterized genes being Cntn5 and Jrkl, ?1.5 and 0.9?Mbp from the transgene, respectively. One advantage of knowing a transgene insertion site is that it facilitates distinguishing hemizygous from homozygous transgenic mice. Although this can be accomplished by real-time quantitative PCR, the expected Ct difference is only one cycle, which is challenging to assess accurately. Therefore, the transgene insertion site information was used to develop a 3-primer qualitative PCR assay that readily distinguishes wild type, hemizygous, and homozygous TPO-Cre mice based upon size differences of the wild type and transgenic allele PCR products. Conclusions: Identification of the genomic insertion site of the thyroid peroxidase promoter?Cre mouse transgene should facilitate the use of these mice in studies of thyroid biology.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140267/1/thy.2015.0215.pd
Essential Role forSonic hedgehogduring Hair Follicle Morphogenesis
AbstractThe hair follicle is a source of epithelial stem cells and site of origin for several types of skin tumors. Although it is clear that follicles arise by way of a series of inductive tissue interactions, identification of the signaling molecules driving this process remains a major challenge in skin biology. In this study we report an obligatory role for the secreted morphogen Sonic hedgehog (Shh) during hair follicle development. Hair germs comprising epidermal placodes and associated dermal condensates were detected in both control andShh−/− embryos, but progression through subsequent stages of follicle development was blocked in mutant skin. The expression ofGli1andPtc1was reduced inShh−/− dermal condensates and they failed to evolve into hair follicle papillae, suggesting that the adjacent mesenchyme is a critical target for placode-derived Shh. Despite the profound inhibition of hair follicle morphogenesis, late-stage follicle differentiation markers were detected inShh−/− skin grafts, as well as cultured vibrissa explants treated with cyclopamine to block Shh signaling. Our findings reveal an essential role for Shh during hair follicle morphogenesis, where it is required for normal advancement beyond the hair germ stage of development
The FU gene and its possible protein isoforms
BACKGROUND: FU is the human homologue of the Drosophila gene fused whose product fused is a positive regulator of the transcription factor Cubitus interruptus (Ci). Thus, FU may act as a regulator of the human counterparts of Ci, the GLI transcription factors. Since Ci and GLI are targets of Hedgehog signaling in development and morphogenesis, it is expected that FU plays an important role in Sonic, Desert and/or Indian Hedgehog induced cellular signaling. RESULTS: The FU gene was identified on chromosome 2q35 at 217.56 Mb and its exon-intron organization determined. The human developmental disorder Syndactyly type 1 (SD1) maps to this region on chromosome 2 and the FU coding region was sequenced using genomic DNA from an affected individual in a linked family. While no FU mutations were found, three single nucleotide polymorphisms were identified. The expression pattern of FU was thoroughly investigated and all examined tissues express FU. It is also clear that different tissues express transcripts of different sizes and some tissues express more than one transcript. By means of nested PCR of specific regions in RT/PCR generated cDNA, it was possible to verify two alternative splicing events. This also suggests the existence of at least two additional protein isoforms besides the FU protein that has previously been described. This long FU and a much shorter isoform were compared for the ability to regulate GLI1 and GLI2. None of the FU isoforms showed any effects on GLI1 induced transcription but the long form can enhance GLI2 activity. Apparently FU did not have any effect on SUFU induced inhibition of GLI. CONCLUSIONS: The FU gene and its genomic structure was identified. FU is a candidate gene for SD1, but we have not identified a pathogenic mutation in the FU coding region in a family with SD1. The sequence information and expression analyses show that transcripts of different sizes are expressed and subjected to alternative splicing. Thus, mRNAs may contain different 5'UTRs and encode different protein isoforms. Furthermore, FU is able to enhance the activity of GLI2 but not of GLI1, implicating FU in some aspects of Hedgehog signaling
Hair follicle bulge stem cells appear dispensable for the acute phase of wound re-epithelialization
YesThe cutaneous healing response has evolved to occur rapidly, in order to minimize infection and to re‐establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15+ve bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo‐epidermis. However, the identity of the first‐responding cells, and in particular whether this process involves a direct contribution of K15+ve bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin‐mediated partial ablation of K15+ve bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaust and tumorigenesis.BBSRC
Investigations on Inhibitors of Hedgehog Signal Pathway: A Quantitative Structure-Activity Relationship Study
The hedgehog signal pathway is an essential agent in developmental patterning, wherein the local concentration of the Hedgehog morphogens directs cellular differentiation and expansion. Furthermore, the Hedgehog pathway has been implicated in tumor/stromal interaction and cancer stem cell. Nowadays searching novel inhibitors for Hedgehog Signal Pathway is drawing much more attention by biological, chemical and pharmological scientists. In our study, a solid computational model is proposed which incorporates various statistical analysis methods to perform a Quantitative Structure-Activity Relationship (QSAR) study on the inhibitors of Hedgehog signaling. The whole QSAR data contain 93 cyclopamine derivatives as well as their activities against four different cell lines (NCI-H446, BxPC-3, SW1990 and NCI-H157). Our extensive testing indicated that the binary classification model is a better choice for building the QSAR model of inhibitors of Hedgehog signaling compared with other statistical methods and the corresponding in silico analysis provides three possible ways to improve the activity of inhibitors by demethylation, methylation and hydroxylation at specific positions of the compound scaffold respectively. From these, demethylation is the best choice for inhibitor structure modifications. Our investigation also revealed that NCI-H466 served as the best cell line for testing the activities of inhibitors of Hedgehog signal pathway among others
Optical coherence tomography for the diagnosis of skin cancer in adults
Background:
Early accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and squamous cell carcinoma (SCC) are high-risk skin cancers, which have the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised, with potential to infiltrate and damage surrounding tissue. Anxiety around missing early cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Optical coherence tomography (OCT) is a microscopic imaging technique, which magnifies the surface of a skin lesion using near-infrared light. Used in conjunction with clinical or dermoscopic examination of suspected skin cancer, or both, OCT may offer additional diagnostic information compared to other technologies.
Objectives:
To determine the diagnostic accuracy of OCT for the detection of cutaneous invasive melanoma and atypical intraepidermal melanocytic variants, basal cell carcinoma (BCC), or cutaneous squamous cell carcinoma (cSCC) in adults.
Search methods:
We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; EMBASE; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles.
Selection criteria:
Studies evaluating OCT in adults with lesions suspicious for invasive melanoma and atypical intraepidermal melanocytic variants, BCC or cSCC, compared with a reference standard of histological confirmation or clinical follow-up.
Data collection and analysis:
Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). Our unit of analysis was lesions. Where possible, we estimated summary sensitivities and specificities using the bivariate hierarchical model.
Main results:
Five studies including 529 cutaneous lesions (273 malignant lesions) were included, providing nine datasets for OCT, two for visual inspection alone, and two for visual inspection plus dermoscopy. Studies were of moderate to poor quality using data driven thresholds for test positivity and giving poor accounts of reference standard interpretation and blinding. Studies may
not be representative of populations eligible for OCT in practice, for example due to high disease prevalence in study populations, and may not reflect how OCT is used in practice, for example by using previously acquired OCT images.
It is not possible to make summary statements regarding accuracy of detection of melanoma or of cSCC because of the paucity of studies, small sample sizes, and for melanoma differences in the OCT technologies used (high-definition versus conventional resolution OCT), and differences in the degree of testing performed prior to OCT (i.e. visual inspection alone or visual inspection plus dermoscopy).
Pooled data from two studies using conventional swept-source OCT alongside visual inspection and dermoscopy for the detection of BCC estimated the sensitivity and specificity of OCT as 95% (95% CI: 91, 97%) and 77% (95% CI: 69, 83%), respectively.
When applied to a hypothetical population of 1000 lesions at the mean observed BCC prevalence of 60%, OCT would miss 31 BCCs (91 fewer than would be missed by visual inspection alone and 53 fewer than would be missed by visual inspection and dermoscopy), and OCT would lead to 93 false positive results for BCC (a reduction in unnecessary excisions of 159 compared to using visual inspection alone and of 87 compared to visual inspection and dermoscopy).
Authors' conclusions:
Insufficient data are available on the use of OCT for the detection of melanoma or cSCC. Initial data suggests conventional OCT may have a role for the diagnosis of BCC in clinically challenging lesions, our meta-analysis showing a higher sensitivity and higher specificity when compared to visual inspection and dermoscopy. However the small number of studies and varying methodological quality means implications to guide practice cannot currently be drawn. Appropriately designed prospective comparative studies are required, given the paucity of data comparing OCT with dermoscopy and indeed other similar diagnostic aids such as reflectance confocal microscopy
The magnitude of hedgehog signaling activity defines skin tumor phenotype
Gain-of-function mutations in SMO have been implicated in constitutive activation of the hedgehog signaling pathway in human basal cell carcinomas (BCCs). We used a truncated keratin 5 (ΔK5) promoter to assess the potential role of the human M2SMO mutant in BCC development in adult transgenic mice. ΔK5-M2SMO mouse epidermis is hyperproliferative, ex presses BCC protein markers and gives rise to numerous epithelial downgrowths invading the underlying dermis. Lesions strikingly similar to human basaloid follicular hamartomas develop, but BCCs do not arise even in elderly mice. Hedgehog target gene transcripts were only modestly upregulated in mouse and human follicular hamartomas, in contrast to the high levels detected in BCCs. Cyclins D1 and D2 were selectively upregulated in mouse BCCs. Our data suggest that the levels of hedgehog pathway activation and G(1) cyclins are major determinants of tumor phenotype in skin, and strongly implicate deregulated hedgehog signaling in the genesis of human basaloid follicular hamartomas. Expression of an activated SMO mutant in keratinocytes appears to be insufficient for the development and/or maintenance of full-blown BCCs
- …