213 research outputs found
Effect of hydrogen adsorption on the quasiparticle spectra of graphene
We use the non-interacting tight-binding model to study the effect of
isolated hydrogen adsorbates on the quasiparticle spectra of single-layer
graphene. Using the Green's function approach, we obtain analytic expressions
for the local density of states and the spectral function of hydrogen-doped
graphene, which are also numerically evaluated and plotted. Our results are
relevant for the interpretation of scanning tunneling microscopy and
angle-resolved photoemission spectroscopy data of functionalized graphene.Comment: 4 pages, 3 figures, minor corrections to tex
Interface to high-performance periodic coupled-cluster theory calculations with atom-centered, localized basis functions
Coupled cluster (CC) theory is often considered the gold standard of quantum-chemistry. For solids, however, the available software is scarce. We present CC-aims, which can interface ab initio codes with localized atomic orbitals and the CC for solids (CC4S) code by the group of A. Gr\"uneis. CC4S features a continuously growing selection of wave function-based methods including perturbation and CC theory. The CC-aims interface was developed for the FHI-aims code (https://fhi-aims.org) but is implemented such that other codes may use it as a starting point for corresponding interfaces. As CC4S offers treatment of both molecular and periodic systems, the CC-aims interface is a valuable tool, where DFT is either too inaccurate or too unreliable, in theoretical chemistry and materials science alike
Quasi-freestanding and single-atom thick layer of hexagonal boron nitride as a substrate for graphene synthesis
We demonstrate that freeing a single-atom thick layer of hexagonal boron
nitride (hbn) from tight chemical bonding to a Ni(111) thin film grown on a
W(110) substrate can be achieved by intercalation of Au atoms into the
interface. This process has been systematically investigated using
angle-resolved photoemission spectroscopy, X-ray photoemission and absorption
techniques. It has been demonstrated that the transition of the hbn layer from
the "rigid" into the "quasi-freestanding" state is accompanied by a change of
its lattice constant. Using chemical vapor deposition, graphene has been
successfully synthesized on the insulating, quasi-freestanding hbn monolayer.
We anticipate that the in situ synthesized weakly interacting graphene/hbn
double layered system could be further developed for technological applications
and may provide perspectives for further inquiry into the unusual electronic
properties of graphene.Comment: in print in Phys. Rev.
Phonon surface mapping of graphite: disentangling quasi--degenerate phonon dispersions
The two-dimensional mapping of the phonon dispersions around the point of
graphite by inelastic x-ray scattering is provided. The present work resolves
the longstanding issue related to the correct assignment of transverse and
longitudinal phonon branches at . We observe an almost degeneracy of the
three TO, LA and LO derived phonon branches and a strong phonon trigonal
warping. Correlation effects renormalize the Kohn anomaly of the TO mode, which
exhibits a trigonal warping effect opposite to that of the electronic band
structure. We determined the electron--phonon coupling constant to be
166 in excellent agreement to calculations. These results
are fundamental for understanding angle-resolved photoemission,
double--resonance Raman and transport measurements of graphene based systems
Tight--binding description of the quasiparticle dispersion of graphite and few--layer graphene
A universal set of third--nearest neighbour tight--binding (TB) parameters is
presented for calculation of the quasiparticle (QP) dispersion of stacked
graphene layers () with stacking sequence. The QP
bands are strongly renormalized by electron--electron interactions which
results in a 20% increase of the nearest neighbour in--plane and out--of--plane
TB parameters when compared to band structure from density functional theory.
With the new set of TB parameters we determine the Fermi surface and evaluate
exciton energies, charge carrier plasmon frequencies and the conductivities
which are relevant for recent angle--resolved photoemission, optical, electron
energy loss and transport measurements. A comparision of these quantitities to
experiments yields an excellent agreement. Furthermore we discuss the
transition from few layer graphene to graphite and a semimetal to metal
transition in a TB framework.Comment: Corresponding author: A. Gr\"uneis Tel.: +49 351 4659 519 e--mail:
[email protected]
Simple model for 1/f noise
We present a simple stochastic mechanism which generates pulse trains
exhibiting a power law distribution of the pulse intervals and a
power spectrum over several decades at low frequencies with close to
one. The essential ingredient of our model is a fluctuating threshold which
performs a Brownian motion. Whenever an increasing potential hits the
threshold, is reset to the origin and a pulse is emitted. We show that
if increases linearly in time, the pulse intervals can be approximated
by a random walk with multiplicative noise. Our model agrees with recent
experiments in neurobiology and explains the high interpulse interval
variability and the occurrence of noise observed in cortical
neurons and earthquake data.Comment: 4 pages, 4 figure
The effect of sublattice symmetry breaking on the electronic properties of a doped graphene
Motivated by a number of recent experimental studies, we have carried out the
microscopic calculation of the quasiparticle self-energy and spectral function
in a doped graphene when a symmetry breaking of the sublattices is occurred.
Our systematic study is based on the many-body GW approach that is
established on the random phase approximation and on graphene's massive Dirac
equation continuum model. We report extensive calculations of both the real and
imaginary parts of the quasiparticle self-energy in the presence of a gap
opening. We also present results for spectral function, renormalized Fermi
velocity and band gap renormalization of massive Dirac Fermions over a broad
range of electron densities. We further show that the mass generating in
graphene washes out the plasmaron peak in spectral weight.Comment: 22 Pages, 10 Figure
Fine-tuning the functional properties of carbon nanotubes via the interconversion of encapsulated molecules
Tweaking the properties of carbon nanotubes is a prerequisite for their
practical applications. Here we demonstrate fine-tuning the electronic
properties of single-wall carbon nanotubes via filling with ferrocene
molecules. The evolution of the bonding and charge transfer within the tube is
demonstrated via chemical reaction of the ferrocene filler ending up as
secondary inner tube. The charge transfer nature is interpreted well within
density functional theory. This work gives the first direct observation of a
fine-tuned continuous amphoteric doping of single-wall carbon nanotubes
- …