667 research outputs found
Atomistic Studies of Deformation and Fracture in Materials with Mixed Metallic and Covalent Bonding
Materials with high melting temperatures (over 2000°C) tend to be brittle at ambient and even relatively high temperatures. High melting temperatures originate in strong interatomic bonding arising from formation of dd or dp bonds that also affect and/or control crystal structures and properties of extended defects, such as dislocations, grain boundaries. These, in turn, govern plastic deformation and fracture. General goal: Establish relationship between electronic structure and mechanical behavio
Atomistic studies of transformation pathways and energetics in plutonium
One of the most challenging problems in understanding the structural phase
transformations in Pu is to determine the energetically favored, continuous
atomic pathways from one crystal symmetry to another. This problem involves
enumerating candidate pathways and studying their energetics to garner insight
into instabilities and energy barriers. The purpose of this work is to
investigate the energetics of two transformation pathways for the delta to
alpha' transformation in Pu that were recently proposed [Lookman et al., Phys.
Rev. Lett. 100:145504, 2008] on the basis of symmetry. These pathways require
the presence of either an intermediate hexagonal closed-packed (hcp) structure
or a simple hexagonal (sh) structure. A subgroup of the parent fcc and the
intermediate hexagonal structure, which has trigonal symmetry, facilitates the
transformation to the intermediate hcp or sh structure. Phonons then break the
translational symmetry from the intermediate hcp or sh structure to the final
monoclinic symmetry of the alpha' structure. We perform simulations using the
modified embedded atom method (MEAM) for Pu to investigate these candidate
pathways. Our main conclusion is that the path via hcp is energetically favored
and the volume change for both pathways essentially occurs in the second step
of the transformation, i.e. from the intermediate sh or hcp to the monoclinic
structure. Our work also highlights the deficiency of the current
state-of-the-art MEAM potential in capturing the anisotropy associated with the
lower symmetry monoclinic structure.Comment: 12 pages, 5 figures, accepted for publication in Philos. Ma
Enhanced LoD concepts for virtual 3D city models
Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and ist exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model
Slave to the rhythm: seasonal signals in otolith microchemistry reveal age of eastern Baltic cod (Gadus morhua)
Annual growth zones in cod otoliths from the eastern Baltic stock are less discrete than in other cod stocks leading to biased age reading, which recently led to a failure of age-based assessment in the eastern Baltic cod stock. In this study, we explored the applicability of minor and trace element patterns in cod otoliths for age determination. By first identifying elements of interest in a stock without ageing problems, western Baltic cod, we then tested their applicability on another stock without ageing problems, North Sea cod, and finally applied this knowledge to estimate age of eastern Baltic cod. In western Baltic cod, matching patterns with respect to occurrence of minima and maxima in both otolith opacity and element concentrations were found for Cu, Zn, and Rb, and inverse patterns with Mg and Mn. No match was found for Pb, Ba, and Sr. In the test stock, the North Sea cod, the same patterns in Cu, Zn, Rb, Mg, and Mn signals occurred. All eastern Baltic cod with low visual contrast between growth zones exhibited clearly defined synchronous cycles in Cu, Zn, Rb and Pb. Using a combined finite differencing method and structural break models approach, the statistical significance of the local profile minima were identified, based on which their age could be estimated. Despite extensive environmental differences between the three areas examined, the element concentrations of Cu, Zn, and Rb were strongly correlated in all individuals with similar correlations in all three areas, suggesting that the incorporation mechanisms are the same for these elements and independent of environmental concentrations
The influence of transition metal solutes on dislocation core structure and values of Peierls stress and barrier in tungsten
Several transition metals were examined to evaluate their potential for
improving the ductility of tungsten. The dislocation core structure and Peierls
stress and barrier of screw dislocations in binary
tungsten-transition metal alloys (WTM) were investigated using
first principles electronic structure calculations. The periodic quadrupole
approach was applied to model the structure of dislocation. Alloying
with transition metals was modeled using the virtual crystal approximation and
the applicability of this approach was assessed by calculating the equilibrium
lattice parameter and elastic constants of the tungsten alloys. Reasonable
agreement was obtained with experimental data and with results obtained from
the conventional supercell approach. Increasing the concentration of a
transition metal from the VIIIA group, i.e. the elements in columns headed by
Fe, Co and Ni, leads to reduction of the elastic constant and
increase of elastic anisotropy A=. Alloying W with a group
VIIIA transition metal changes the structure of the dislocation core from
symmetric to asymmetric, similar to results obtained for WRe
alloys in the earlier work of Romaner {\it et al} (Phys. Rev. Lett. 104, 195503
(2010))\comments{\cite{WRECORE}}. In addition to a change in the core symmetry,
the values of the Peierls stress and barrier are reduced. The latter effect
could lead to increased ductility in a tungsten-based
alloy\comments{\cite{WRECORE}}. Our results demonstrate that alloying with any
of the transition metals from the VIIIA group should have similar effect as
alloying with Re.Comment: 12 pages, 8 figures, 3 table
Alarm-Based Prescriptive Process Monitoring
Predictive process monitoring is concerned with the analysis of events
produced during the execution of a process in order to predict the future state
of ongoing cases thereof. Existing techniques in this field are able to
predict, at each step of a case, the likelihood that the case will end up in an
undesired outcome. These techniques, however, do not take into account what
process workers may do with the generated predictions in order to decrease the
likelihood of undesired outcomes. This paper proposes a framework for
prescriptive process monitoring, which extends predictive process monitoring
approaches with the concepts of alarms, interventions, compensations, and
mitigation effects. The framework incorporates a parameterized cost model to
assess the cost-benefit tradeoffs of applying prescriptive process monitoring
in a given setting. The paper also outlines an approach to optimize the
generation of alarms given a dataset and a set of cost model parameters. The
proposed approach is empirically evaluated using a range of real-life event
logs
On the incompatibility of strains and its application to mesoscopic studies of plasticity
Structural transitions are invariably affected by lattice distortions. If the
body is to remain crack-free, the strain field cannot be arbitrary but has to
satisfy the Saint-Venant compatibility constraint. Equivalently, an
incompatibility constraint consistent with the actual dislocation network has
to be satisfied in media with dislocations. This constraint can be incorporated
into strain-based free energy functionals to study the influence of
dislocations on phase stability. We provide a systematic analysis of this
constraint in three dimensions and show how three incompatibility equations
accommodate an arbitrary dislocation density. This approach allows the internal
stress field to be calculated for an anisotropic material with spatially
inhomogeneous microstructure and distribution of dislocations by minimizing the
free energy. This is illustrated by calculating the stress field of an edge
dislocation and comparing it with that of an edge dislocation in an infinite
isotropic medium. We outline how this procedure can be utilized to study the
interaction of plasticity with polarization and magnetization.Comment: 6 pages, 2 figures; will appear in Phys. Rev.
An Introduction to Nuclear Supersymmetry: a Unification Scheme for Nuclei
The main ideas behind nuclear supersymmetry are presented, starting from the
basic concepts of symmetry and the methods of group theory in physics. We
propose new, more stringent experimental tests that probe the supersymmetry
classification in nuclei and point out that specific correlations should exist
for particle transfer intensities among supersymmetric partners. We also
discuss possible ways to generalize these ideas to cases where no dynamical
symmetries are present. The combination of these theoretical and experimental
studies may play a unifying role in nuclear phenomena.Comment: 40 pages, 11 figures, lecture notes `VIII Hispalensis International
Summer School: Exotic Nuclear Physics', Oromana, Sevilla, Spain, June 9-21,
200
- …