15 research outputs found

    Assessment of aberrant DNA methylation two years after paediatric critical illness:a pre-planned secondary analysis of the international PEPaNIC trial

    Get PDF
    Critically ill children requiring intensive care suffer from impaired physical/neurocognitive development 2 y later, partially preventable by omitting early use of parenteral nutrition (early-PN) in the paediatric intensive-care-unit (PICU). Altered methylation of DNA from peripheral blood during PICU-stay provided a molecular basis hereof. Whether DNA-methylation of former PICU patients, assessed 2 y after critical illness, is different from that of healthy children remained unknown. In a pre-planned secondary analysis of the PEPaNIC-RCT (clinicaltrials.gov-NCT01536275) 2-year follow-up, we assessed buccal-mucosal DNA-methylation (Infinium-HumanMethylation-EPIC-BeadChip) of former PICU-patients (N = 406 early-PN; N = 414 late-PN) and matched healthy children (N = 392). CpG-sites differentially methylated between groups were identified with multivariable linear regression and differentially methylated DNA-regions via clustering of differentially methylated CpG-sites using kernel-estimates. Analyses were adjusted for technical variation and baseline risk factors, and corrected for multiple testing (false-discovery-rate <0.05). Differentially methylated genes were functionally annotated (KEGG-pathway database), and allocated to three classes depending on involvement in physical/neurocognitive development, critical illness and intensive medical care, or pre-PICU-admission disorders. As compared with matched healthy children, former PICU-patients showed significantly different DNA-methylation at 4047 CpG-sites (2186 genes) and 494 DNA-regions (468 genes), with most CpG-sites being hypomethylated (90.3%) and with an average absolute 2% effect-size, irrespective of timing of PN initiation. Of the differentially methylated KEGG-pathways, 41.2% were related to physical/neurocognitive development, 32.8% to critical illness and intensive medical care and 26.0% to pre-PICU-admission disorders. Two years after critical illness in children, buccal-mucosal DNA showed abnormal methylation of CpG-sites and DNA-regions located in pathways known to be important for physical/neurocognitive development

    Immunolocalization of calbindin D28k and calretinin in the dog cochlea during postnatal development

    No full text
    The calbindin (CB) and the calretinin (CR) immunoreactivities were studied in the dog cochlea during its postnatal maturation from birth to the 33rd postnatal day. At birth, CB was expressed in the Kolliker's organ, in the immature inner (IHC) and outer hair cells (OHC), in neurons of the spiral ganglion, and in nerve fibers running in the basilar membrane of the apical turn. During the cochlear maturation, non-sensorineuronal structures, such as the Kolliker's organ, the rods of Corti, and the inner sulcus cells, displayed a transient CB-staining. In the adult-like dog cochlea, CB was found in the cytoplasm, the cuticular plate, and the stereocilia of the IHC and OHC. All the neurons of the spiral ganglion and some nerves fibers in the modulius were CB-positive. At birth, CR exhibited a neuronal distribution: about 75% of the spiral ganglion neurons, some nerve fibers in the modulius and nerve fibers running in the basilar membrane were CR-labeled. During the postnatal maturation, a CR-immunostaining appeared around the IHC body and CR was expressed transiently in the OHC. In the adult-like dog cochlea, a CR-positive network surrounded the unlabeled IHC. The neuronal CR-labeling remained unchanged from birth. Copyright (C) 2000 Elsevier Science B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Abnormal DNA methylation within genes of the steroidogenesis pathway two years after paediatric critical illness and association with stunted growth in height further in time

    Get PDF
    Abstract Background Former critically ill children show an epigenetic age deceleration 2 years after paediatric intensive care unit (PICU) admission as compared with normally developing healthy children, with stunted growth in height 2 years further in time as physical correlate. This was particularly pronounced in children who were 6 years or older at the time of critical illness. As this age roughly corresponds to the onset of adrenarche and further pubertal development, a relation with altered activation of endocrine pathways is plausible. We hypothesised that children who have been admitted to the PICU, sex- and age-dependently show long-term abnormal DNA methylation within genes involved in steroid hormone synthesis or steroid sulphation/desulphation, possibly aggravated by in-PICU glucocorticoid treatment, which may contribute to stunted growth in height further in time after critical illness. Results In this preplanned secondary analysis of the multicentre PEPaNIC-RCT and its follow-up, we compared the methylation status of genes involved in the biosynthesis of steroid hormones (aldosterone, cortisol and sex hormones) and steroid sulphation/desulphation in buccal mucosa DNA (Infinium HumanMethylation EPIC BeadChip) from former PICU patients at 2-year follow-up (n = 818) and healthy children with comparable sex and age (n = 392). Adjusting for technical variation and baseline risk factors and corrected for multiple testing (false discovery rate < 0.05), former PICU patients showed abnormal DNA methylation of 23 CpG sites (within CYP11A1, POR, CYB5A, HSD17B1, HSD17B2, HSD17B3, HSD17B6, HSD17B10, HSD17B12, CYP19A1, CYP21A2, and CYP11B2) and 4 DNA regions (within HSD17B2, HSD17B8, and HSD17B10) that were mostly hypomethylated. These abnormalities were partially sex- (1 CpG site) or age-dependent (7 CpG sites) and affected by glucocorticoid treatment (3 CpG sites). Finally, multivariable linear models identified robust associations of abnormal methylation of steroidogenic genes with shorter height further in time, at 4-year follow-up. Conclusions Children who have been critically ill show abnormal methylation within steroidogenic genes 2 years after PICU admission, which explained part of the stunted growth in height at 4-year follow-up. The abnormalities in DNA methylation may point to a long-term disturbance in the balance between active sex steroids and mineralocorticoids/glucocorticoids after paediatric critical illness, which requires further investigation

    Long-term impact of paediatric critical illness on the difference between epigenetic and chronological age in relation to physical growth

    Get PDF
    Abstract Background Altered DNA-methylation affects biological ageing in adults and developmental processes in children. DNA-methylation is altered by environmental factors, trauma and illnesses. We hypothesised that paediatric critical illness, and the nutritional management in the paediatric intensive care unit (PICU), affects DNA-methylation changes that underly the developmental processes of childhood ageing. Results We studied the impact of critical illness, and of the early use of parenteral nutrition (early-PN) versus late-PN, on “epigenetic age-deviation” in buccal mucosa of 818 former PICU-patients (406 early-PN, 412 late-PN) who participated in the 2-year follow-up of the multicentre PEPaNIC-RCT (ClinicalTrials.gov-NCT01536275), as compared with 392 matched healthy children, and assessed whether this relates to their impaired growth. The epigenetic age-deviation (difference between PedBE clock-estimated epigenetic age and chronological age) was calculated. Using bootstrapped multivariable linear regression models, we assessed the impact hereon of critical illness, and of early-PN versus late-PN. As compared with healthy children, epigenetic age of patients assessed 2 years after PICU-admission deviated negatively from chronological age (p < 0.05 in 51% of bootstrapped replicates), similarly in early-PN and late-PN groups. Next, we identified vulnerable subgroups for epigenetic age-deviation using interaction analysis. We revealed that DNA-methylation age-deceleration in former PICU-patients was dependent on age at time of illness (p < 0.05 for 83% of bootstrapped replicates), with vulnerability starting from 6 years onwards. Finally, we assessed whether vulnerability to epigenetic age-deviation could be related to impaired growth from PICU-admission to follow-up at 2 and 4 years. Multivariable repeated measures ANOVA showed that former PICU-patients, as compared with healthy children, grew less in height (p = 0.0002) and transiently gained weight (p = 0.0003) over the 4-year time course. Growth in height was more stunted in former PICU-patients aged ≥ 6-years at time of critical illness (p = 0.002) than in the younger patients. Conclusions As compared with healthy children, former PICU-patients, in particular those aged ≥ 6-years at time of illness, revealed epigenetic age-deceleration, with a physical correlate revealing stunted growth in height. Whether this vulnerability around the age of 6 years for epigenetic age-deceleration and stunted growth years later relates to altered endocrine pathways activated at the time of adrenarche requires further investigation

    Abnormal DNA methylation within HPA-axis genes years after paediatric critical illness

    Get PDF
    Abstract Background Critically ill children suffer from impaired physical/neurocognitive development 2 years later. Glucocorticoid treatment alters DNA methylation within the hypothalamus–pituitary–adrenal (HPA) axis which may impair normal brain development, cognition and behaviour. We tested the hypothesis that paediatric-intensive-care-unit (PICU) patients, sex- and age-dependently, show long-term abnormal DNA methylation within the HPA-axis layers, possibly aggravated by glucocorticoid treatment in the PICU, which may contribute to the long-term developmental impairments. Results In a pre-planned secondary analysis of the multicentre PEPaNIC-RCT and its 2-year follow-up, we identified differentially methylated positions and differentially methylated regions within HPA-axis genes in buccal mucosa DNA from 818 former PICU patients 2 years after PICU admission (n = 608 no glucocorticoid treatment; n = 210 glucocorticoid treatment) versus 392 healthy children and assessed interaction with sex and age, role of glucocorticoid treatment in the PICU and associations with long-term developmental impairments. Adjusting for technical variation and baseline risk factors and correcting for multiple testing (false discovery rate < 0.05), former PICU patients showed abnormal DNA methylation of 26 CpG sites (within CRHR1, POMC, MC2R, NR3C1, FKBP5, HSD11B1, SRD5A1, AKR1D1, DUSP1, TSC22D3 and TNF) and three DNA regions (within AVP, TSC22D3 and TNF) that were mostly hypomethylated. These abnormalities were sex-independent and only partially age-dependent. Abnormal methylation of three CpG sites within FKBP5 and one CpG site within SRD5A1 and AKR1D1 was partly attributable to glucocorticoid treatment during PICU stay. Finally, abnormal methylation within FKBP5 and AKR1D1 was most robustly associated with long-term impaired development. Conclusions Two years after critical illness in children, abnormal methylation within HPA-axis genes was present, predominantly within FKBP5 and AKR1D1, partly attributable to glucocorticoid treatment in the PICU, and explaining part of the long-term developmental impairments. These data call for caution regarding liberal glucocorticoid use in the PICU

    Additional file 1 of Abnormal DNA methylation within genes of the steroidogenesis pathway two years after paediatric critical illness and association with stunted growth in height further in time

    No full text
    Additional file 1: Compiled file with all Additional information: Additional Methods describing the definition of “Syndrome” and a stepwise explanation of the DMRcate method for the identification of differentially methylated DNA regions; Additional Tables listing the genes and number of CpG sites investigated for differential methylation between former PICU patients and healthy children, the differentially methylated regions in former PICU patients versus healthy children, the interaction of differential methylation in former PICU patients versus healthy children with sex and age at exposure, and the analyses of differential methylation between former PICU patients who received glucocorticoids during their stay in the PICU versus those who did not; and Additional Figure summarising a speculative interpretation of potential impact of abnormal DNA methylation within steroidogenic genes on corresponding gene expression
    corecore