235 research outputs found
UrQMD calculations of two-pion HBT correlations in p+p and Pb+Pb collisions at LHC energies
Two-pion Hanbury-Brown-Twiss (HBT) correlations for p+p and central Pb+Pb
collisions at the Large-Hadron-Collider (LHC) energies are investigated with
the ultra-relativistic quantum molecular dynamics model combined with a
correlation afterburner. The transverse momentum dependence of the
Pratt-Bertsch HBT radii , , and is extracted from
a three-dimensional Gaussian fit to the correlator in the longitudinal
co-moving system. In the p+p case, the dependence of correlations on the
charged particle multiplicity and formation time is explored and the data
allows to constrain the formation time in the string fragmentation to fm/c. In the Pb+Pb case, it is found that is overpredicted
by nearly 50%. The LHC results are also compared to data from the STAR
experiment at RHIC. For both energies we find that the calculated
ratio is always larger than data, indicating that the
emission in the model is less explosive than observed in the data.Comment: 9 pages, 4 figures, 1 table. Talk given by Qingfeng Li at the 11th
International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio,
Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in
Journal of Physics: Conference Series (JPCS
GEO 600 and the GEO-HF upgrade program: successes and challenges
The German-British laser-interferometric gravitational wave detector GEO 600
is in its 14th year of operation since its first lock in 2001. After GEO 600
participated in science runs with other first-generation detectors, a program
known as GEO-HF began in 2009. The goal was to improve the detector sensitivity
at high frequencies, around 1 kHz and above, with technologically advanced yet
minimally invasive upgrades. Simultaneously, the detector would record science
quality data in between commissioning activities. As of early 2014, all of the
planned upgrades have been carried out and sensitivity improvements of up to a
factor of four at the high-frequency end of the observation band have been
achieved. Besides science data collection, an experimental program is ongoing
with the goal to further improve the sensitivity and evaluate future detector
technologies. We summarize the results of the GEO-HF program to date and
discuss its successes and challenges
The GEO600 squeezed light source
The next upgrade of the GEO600 gravitational wave detector is scheduled for
2010 and will, in particular, involve the implementation of squeezed light. The
required non-classical light source is assembled on a 1.5m^2 breadboard and
includes a full coherent control system and a diagnostic balanced homodyne
detector. Here, we present the first experimental characterization of this
setup as well as a detailed description of its optical layout. A squeezed
quantum noise of up to 9dB below the shot-noise level was observed in the
detection band between 10Hz and 10kHz. We also present an analysis of the
optical loss in our experiment and provide an estimation of the possible
non-classical sensitivity improvement of the future squeezed light enhanced
GEO600 detector.Comment: 8 pages, 4 figure
Design of a speed meter interferometer proof-of-principle experiment
The second generation of large scale interferometric gravitational wave
detectors will be limited by quantum noise over a wide frequency range in their
detection band. Further sensitivity improvements for future upgrades or new
detectors beyond the second generation motivate the development of measurement
schemes to mitigate the impact of quantum noise in these instruments. Two
strands of development are being pursued to reach this goal, focusing both on
modifications of the well-established Michelson detector configuration and
development of different detector topologies. In this paper, we present the
design of the world's first Sagnac speed meter interferometer which is
currently being constructed at the University of Glasgow. With this
proof-of-principle experiment we aim to demonstrate the theoretically predicted
lower quantum noise in a Sagnac interferometer compared to an equivalent
Michelson interferometer, to qualify Sagnac speed meters for further research
towards an implementation in a future generation large scale gravitational wave
detector, such as the planned Einstein Telescope observatory.Comment: Revised version: 16 pages, 6 figure
Control of a velocity-sensitive audio-band quantum non-demolition interferometer
The Sagnac speed meter interferometer topology can potentially provide enhanced sensitivity to gravitational waves in the audio-band compared to equivalent Michelson interferometers. A challenge with the Sagnac speed meter interferometer arises from the intrinsic lack of sensitivity at low frequencies where the velocity-proportional signal is smaller than the noise associated with the sensing of the signal. Using as an example the on-going proof-of-concept Sagnac speed meter experiment in Glasgow, we quantify the problem and present a solution involving the extraction of a small displacement-proportional signal. This displacement signal can be combined with the existing velocity signal to enhance low frequency sensitivity, and we derive optimal filters to accomplish this for different signal strengths. We show that the extraction of the displacement signal for low frequency control purposes can be performed without reducing significantly the quantum non-demolition character of this type of interferometer
Scientific Potential of Einstein Telescope
Einstein gravitational-wave Telescope (ET) is a design study funded by the
European Commission to explore the technological challenges of and scientific
benefits from building a third generation gravitational wave detector. The
three-year study, which concluded earlier this year, has formulated the
conceptual design of an observatory that can support the implementation of new
technology for the next two to three decades. The goal of this talk is to
introduce the audience to the overall aims and objectives of the project and to
enumerate ET's potential to influence our understanding of fundamental physics,
astrophysics and cosmology.Comment: Conforms to conference proceedings, several author names correcte
Sensitivity Studies for Third-Generation Gravitational Wave Observatories
Advanced gravitational wave detectors, currently under construction, are
expected to directly observe gravitational wave signals of astrophysical
origin. The Einstein Telescope, a third-generation gravitational wave detector,
has been proposed in order to fully open up the emerging field of gravitational
wave astronomy. In this article we describe sensitivity models for the Einstein
Telescope and investigate potential limits imposed by fundamental noise
sources. A special focus is set on evaluating the frequency band below 10Hz
where a complex mixture of seismic, gravity gradient, suspension thermal and
radiation pressure noise dominates. We develop the most accurate sensitivity
model, referred to as ET-D, for a third-generation detector so far, including
the most relevant fundamental noise contributions.Comment: 13 pages, 7 picture
EBI2 is highly expressed in multiple sclerosis lesions and promotes early CNS migration of encephalitogenic CD4Â T cells
Arrival of encephalitogenic T cells at inflammatory foci represents a critical step in development of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. EBI2 and its ligand, 7{alpha},25-OHC, direct immune cell localization in secondary lymphoid organs. CH25H and CYP7B1 hydroxylate cholesterol to 7{alpha},25-OHC. During EAE, we found increased expression of CH25H by microglia and CYP7B1 by CNS-infiltrating immune cells elevating the ligand concentration in the CNS. Two critical pro-inflammatory cytokines, interleukin-23 (IL-23) and interleukin-1 beta (IL-1{beta}), maintained expression of EBI2 in differentiating Th17 cells. In line with this, EBI2 enhanced early migration of encephalitogenic T cells into the CNS in a transfer EAE model. Nonetheless, EBI2 was dispensable in active EAE. Human Th17 cells do also express EBI2, and EBI2 expressing cells are abundant within multiple sclerosis (MS) white matter lesions. These findings implicate EBI2 as a mediator of CNS autoimmunity and describe mechanistically its contribution to the migration of autoreactive T cells into inflamed organs
The next detectors for gravitational wave astronomy
This paper focuses on the next detectors for gravitational wave astronomy
which will be required after the current ground based detectors have completed
their initial observations, and probably achieved the first direct detection of
gravitational waves. The next detectors will need to have greater sensitivity,
while also enabling the world array of detectors to have improved angular
resolution to allow localisation of signal sources. Sect. 1 of this paper
begins by reviewing proposals for the next ground based detectors, and presents
an analysis of the sensitivity of an 8 km armlength detector, which is proposed
as a safe and cost-effective means to attain a 4-fold improvement in
sensitivity. The scientific benefits of creating a pair of such detectors in
China and Australia is emphasised. Sect. 2 of this paper discusses the high
performance suspension systems for test masses that will be an essential
component for future detectors, while sect. 3 discusses solutions to the
problem of Newtonian noise which arise from fluctuations in gravity gradient
forces acting on test masses. Such gravitational perturbations cannot be
shielded, and set limits to low frequency sensitivity unless measured and
suppressed. Sects. 4 and 5 address critical operational technologies that will
be ongoing issues in future detectors. Sect. 4 addresses the design of thermal
compensation systems needed in all high optical power interferometers operating
at room temperature. Parametric instability control is addressed in sect. 5.
Only recently proven to occur in Advanced LIGO, parametric instability
phenomenon brings both risks and opportunities for future detectors. The path
to future enhancements of detectors will come from quantum measurement
technologies. Sect. 6 focuses on the use of optomechanical devices for
obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum
measurement options
Beyond ‘geo-economics’: advanced unevenness and the anatomy of German austerity
This article aims to shed new light on Germany’s domineering role in the eurocrisis. I argue that the realist-inspired depiction of Germany as a ‘geo-economic power’, locked into zero-sum competition with its European partners, is built around an empty core: unable to theorise how anarchy shapes the calculus of states where security competition has receded, it cannot explain why German state managers have insisted on an austerity response to the crisis despite its significant risks and costs even for Germany itself. To unlock this puzzle, this article outlines a version of uneven and combined development (UCD) that is better able to capture the international pressures and opportunities faced by policy elites in advanced capitalist states that no longer encounter one another as direct security rivals. Applied to Germany, this lens reveals a twofold unevenness in the historical structures and growth cycles of capitalist economies that shape its contradictory choice for austerity. In the long run, the reorientation of the export-dependent German economy from Europe towards Asian and Latin American late industrialisers renders the structural adjustment of the eurozone an opportunity—from the cost-saving view of German manufacturers producing in the European home market for export abroad, as well as for German state officials keen to sustain a crumbling class compromise centred on Germany’s world market success. In the short term, however, its exposed position between the divergent post-crisis trajectories of the US and Europe accelerates pressures for austerity beyond what German state and corporate elites would otherwise consider feasible
- …