188 research outputs found

    Poincar\'e and sl(2) algebras of order 3

    Full text link
    In this paper we initiate a general classification for Lie algebras of order 3 and we give all Lie algebras of order 3 based on sl(2,C)\mathfrak{sl}(2,\mathbb C) and iso(1,3)\mathfrak{iso}(1,3) the Poincar\'e algebra in four-dimensions. We then set the basis of the theory of the deformations (in the Gerstenhaber sense) and contractions for Lie algebras of order 3.Comment: Title and presentation change

    Coadjoint Orbits of Lie Algebras and Cartan Class

    Get PDF
    We study the coadjoint orbits of a Lie algebra in terms of Cartan class. In fact, the tangent space to a coadjoint orbit O(α) at the point α corresponds to the characteristic space associated to the left invariant form α and its dimension is the even part of the Cartan class of α. We apply this remark to determine Lie algebras such that all the nontrivial orbits (nonreduced to a point) have the same dimension, in particular when this dimension is 2 or 4. We determine also the Lie algebras of dimension 2n or 2n+1 having an orbit of dimension 2n

    The partially alternating ternary sum in an associative dialgebra

    Full text link
    The alternating ternary sum in an associative algebra, abcacbbac+bca+cabcbaabc - acb - bac + bca + cab - cba, gives rise to the partially alternating ternary sum in an associative dialgebra with products \dashv and \vdash by making the argument aa the center of each term: abcacbbac+cab+bcacbaa \dashv b \dashv c - a \dashv c \dashv b - b \vdash a \dashv c + c \vdash a \dashv b + b \vdash c \vdash a - c \vdash b \vdash a. We use computer algebra to determine the polynomial identities in degree 9\le 9 satisfied by this new trilinear operation. In degrees 3 and 5 we obtain [a,b,c]+[a,c,b]0[a,b,c] + [a,c,b] \equiv 0 and [a,[b,c,d],e]+[a,[c,b,d],e]0[a,[b,c,d],e] + [a,[c,b,d],e] \equiv 0; these identities define a new variety of partially alternating ternary algebras. We show that there is a 49-dimensional space of multilinear identities in degree 7, and we find equivalent nonlinear identities. We use the representation theory of the symmetric group to show that there are no new identities in degree 9.Comment: 14 page

    On the structure of maximal solvable extensions and of Levi extensions of nilpotent algebras

    Full text link
    We establish an improved upper estimate on dimension of any solvable algebra s with its nilradical isomorphic to a given nilpotent Lie algebra n. Next we consider Levi decomposable algebras with a given nilradical n and investigate restrictions on possible Levi factors originating from the structure of characteristic ideals of n. We present a new perspective on Turkowski's classification of Levi decomposable algebras up to dimension 9.Comment: 21 pages; major revision - one section added, another erased; author's version of the published pape

    Symbolic approach and induction in the Heisenberg group

    Full text link
    We associate a homomorphism in the Heisenberg group to each hyperbolic unimodular automorphism of the free group on two generators. We show that the first return-time of some flows in "good" sections, are conjugate to niltranslations, which have the property of being self-induced.Comment: 18 page

    Invariants of solvable rigid Lie algebras up to dimension 8

    Get PDF
    The invariants of all complex solvable rigid Lie algebras up to dimension eight are computed. Moreover we show, for rank one solvable algebras, some criteria to deduce to non-existence of non-trivial invariants or the existence of fundamental sets of invariants formed by rational functions of the Casimir invariants of the associated nilradical.Comment: 16 pages, 7 table

    Quasi-classical Lie algebras and their contractions

    Get PDF
    After classifying indecomposable quasi-classical Lie algebras in low dimension, and showing the existence of non-reductive stable quasi-classical Lie algebras, we focus on the problem of obtaining sufficient conditions for a quasi-classical Lie algebras to be the contraction of another quasi-classical algebra. It is illustrated how this allows to recover the Yang-Mills equations of a contraction by a limiting process, and how the contractions of an algebra may generate a parameterized families of Lagrangians for pairwise non-isomorphic Lie algebras.Comment: 17 pages, 2 Table

    All solvable extensions of a class of nilpotent Lie algebras of dimension n and degree of nilpotency n-1

    Full text link
    We construct all solvable Lie algebras with a specific n-dimensional nilradical n_(n,2) (of degree of nilpotency (n-1) and with an (n-2)-dimensional maximal Abelian ideal). We find that for given n such a solvable algebra is unique up to isomorphisms. Using the method of moving frames we construct a basis for the Casimir invariants of the nilradical n_(n,2). We also construct a basis for the generalized Casimir invariants of its solvable extension s_(n+1) consisting entirely of rational functions of the chosen invariants of the nilradical.Comment: 19 pages; added references, changes mainly in introduction and conclusions, typos corrected; submitted to J. Phys. A, version to be publishe
    corecore