127 research outputs found
La participation sur les espaces de contenus générés par les utilisateurs, une exploitation collaborative
En partant des notions de prosumer et de crowdsourcing, nous montrons en quoi la théorie critique permet de saisir les mutations des formes de participation en ligne. Nous argumentons que le prosuming s’inscrit dans une logique de récupération capitalistique de la participation dans une logique de délocalisation du travail en dehors des murs des entreprises. Ce texte construit sur un débat sur les catégories de l’analyse marxiste traditionnelle que sont le temps de travail et le travail salarié (Fuchs, 2010, 2012 ; Arvidsson et Colleoni, 2012). Nous cherchons à montrer que l’insertion des formes de prosuming dans les stratégies commerciales des entreprises procède d’un processus de liquéfaction des formes du travail dans le capitalisme avancé et doit donc être analysé comme une forme de travail.Building on the notions of prosumer and crowdsourcing, this article shows how critical theory allows to grasp the mutations of participatives forms online. We argue that prosuming proceeds from a capitalistic recuperation of participation in a logic of delocalization of work outside the web enterprise's wall. This article builts on a debate on the traditional marxist categories of labor-time and wage-labor (Fuchs, 2010, 2012 ; Arvidsson et Colleoni, 2012). We aim to show that the insertion of the different forms of prosuming in commercial strategies proceeds for a mouvement of liquefaction of labor forms in the context of advanced capitalism, and hence, should be analazed as labor.Usando los conceptos de prosumer y crowdsourcing, argumentamos cómo la teoría crítica captura mutaciones en formas de participación en línea. Sostenemos que el prosuming es parte de una lógica de recuperación del capital de la participación en una lógica de deslocalización de trabajo a fuera de los muros de las empresas. Este texto se basa sobre un debate de las categorías de análisis marxista tradicional que son el tiempo de trabajo y el trabajo asalariado (Fuchs, 2010, 2012 ; Arvidsson y Colleoni, 2012). Buscamos demostrar que la inclusión de las formas de prosuming en las estrategias de negocio se debe a un proceso de licuefacción de las formas de trabajo en el capitalismo avanzado y debe ser analizada como una forma de trabajo
A transcriptome-based approach to identify functional modules within and across primary human immune cells
Genome-wide transcriptomic analyses have provided valuable insight into fundamental biology and disease pathophysiology. Many studies have taken advantage of the correlation in
the expression patterns of the transcriptome to infer a potential biologic function of uncharacterized genes, and multiple groups have examined the relationship between co-expression,
co-regulation, and gene function on a broader scale. Given the unique characteristics of
immune cells circulating in the blood, we were interested in determining whether it was possible to identify functional co-expression modules in human immune cells. Specifically, we
sequenced the transcriptome of nine immune cell types from peripheral blood cells of healthy
donors and, using a combination of global and targeted analyses of genes within co-expression modules, we were able to determine functions for these modules that were cell lineagespecific or shared among multiple cell lineages. In addition, our analyses identified transcription factors likely important for immune cell lineage commitment and/or maintenance
Recommended from our members
Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study.
Ulcerative colitis is a chronic inflammatory disease of the colon that presents as diarrhea and gastrointestinal bleeding. We performed a genome-wide association study using DNA samples from 1,052 individuals with ulcerative colitis and preexisting data from 2,571 controls, all of European ancestry. In an analysis that controlled for gender and population structure, ulcerative colitis loci attaining genome-wide significance and subsequent replication in two independent populations were identified on chromosomes 1p36 (rs6426833, combined P = 5.1 x 10(-13), combined odds ratio OR = 0.73) and 12q15 (rs1558744, combined P = 2.5 x 10(-12), combined OR = 1.35). In addition, combined genome-wide significant evidence for association was found in a region spanning BTNL2 to HLA-DQB1 on chromosome 6p21 (rs2395185, combined P = 1.0 x 10(-16), combined OR = 0.66) and at the IL23R locus on chromosome 1p31 (rs11209026, combined P = 1.3 x 10(-8), combined OR = 0.56; rs10889677, combined P = 1.3 x 10(-8), combined OR = 1.29)
Defining the role of the MHC in autoimmunity: a review and pooled analysis
Abstract: The major histocompatibility complex (MHC) is one of the most extensively studied regions in the human genome because of the association of variants at this locus with autoimmune, infectious, and inflammatory diseases. However, identification of causal variants within the MHC for the majority of these diseases has remained difficult due to the great variability and extensive linkage disequilibrium (LD) that exists among alleles throughout this locus, coupled with inadequate study design whereby only a limited subset of about 20 from a total of approximately 250 genes have been studied in small cohorts of predominantly European origin. We have performed a review and pooled analysis of the past 30 years of research on the role of the MHC in six genetically complex disease traits -multiple sclerosis (MS), type 1 diabetes (T1D), systemic lupus erythematosus (SLE), ulcerative colitis (UC), Crohn's disease (CD), and rheumatoid arthritis (RA) -in order to consolidate and evaluate the current literature regarding MHC genetics in these common autoimmune and inflammatory diseases. We corroborate established MHC disease associations and identify predisposing variants that previously have not been appreciated. Furthermore, we find a number of interesting commonalities and differences across diseases that implicate both general and disease-specific pathogenetic mechanisms in autoimmunity
Recommended from our members
High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis.
This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/ng/journal/v47/n2/full/ng.3176.html#acknowledgmentsGenome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.We would like to thank the International PSC study group (http://www.ipscsg.org/) for sharing data. We are grateful to B.A. Lie and K. Holm for helpful discussions. J.D.R. holds a Canada Research Chair, and this work was supported by a US National Institute of Diabetes and Digestive and Kidney Diseases grant (NIDDK; R01 DK064869 and U01 DK062432). The laboratory of A.F. is supported by the German Ministry of Education and Research (BMBF) grant program e:Med (sysINFLAME). A.F. receives infrastructure support from the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence 'Inflammation at Interfaces' and holds an endowment professorship (Peter Hans Hofschneider Professorship) of the Foundation for Experimental Biomedicine (Zurich, Switzerland). Grant support for T.H.K. and A.F. was received from the European Union Seventh Framework Programme (FP7/2007-2013, grant number 262055, ESGI). M.N.C. is supported by the Intramural Research Program of the US National Institutes of Health (NIH), Frederick National Laboratory, Center for Cancer Research. This project has been funded in whole or in part with federal funds from the Frederick National Laboratory for Cancer Research, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US government. J.C.B. was supported by a Wellcome Trust grant (WT098051). D.M. and V.K. are supported by the NIHR Cambridge Biomedical Research Centre. L.P.S. is supported by an NIDDK grant (U01 DK062429-14). J.A.T. is supported by the UK Medical Research Council. D.P.B.M. is supported by the Leona M. and Harry B. Helmsley Charitable Trust, the European Union (305479) and by grants from the NIDDK (U01 DK062413, P01 DK046763-19, U54 DE023789-01), the National Institute of Allergy and Infectious Diseases (NIAID; U01 AI067068) and the Agency for Healthcare Research and Quality (AHRQ; HS021747). R.H.D. holds the Inflammatory Bowel Disease Genetic Research endowed chair at the University of Pittsburgh and was supported by an NIDDK grant (U01 DK062420) and a US National Cancer Institute grant (CA141743). S.L.H. and J.R.O. would like to also acknowledge the support of the US NIH (R01 NS049477 and 1U19 A1067152) and the National Multiple Sclerosis Society (RG 2899-D11). S.L. wishes to acknowledge support from the Australian National Health and Medical Research Council (R.D. Wright Career Development Fellowship, APP1053756)
A Major Histocompatibility Class I Locus Contributes to Multiple Sclerosis Susceptibility Independently from HLA-DRB1*15:01
Background: In Northern European descended populations, genetic susceptibility for multiple sclerosis (MS) is associated with alleles of the human leukocyte antigen (HLA) Class II gene DRB1. Whether other major histocompatibility complex (MHC) genes contribute to MS susceptibility is controversial. Methodology/Principal Findings: A case control analysis was performed using 958 single nucleotide polymorphisms (SNPs) spanning the MHC assayed in two independent datasets. The discovery dataset consisted of 1,018 cases and 1,795 controls and the replication dataset was composed of 1,343 cases and 1,379 controls. The most significantly MS-associated SNP in the discovery dataset was rs3135391, a Class II SNP known to tag the HLA-DRB1*15:01 allele, the primary MS susceptibility allele in the MHC (O.R. = 3.04, p<1×10−78). To control for the effects of the HLA-DRB1*15:01 haplotype, case control analysis was performed adjusting for this HLA-DRB1*15:01 tagging SNP. After correction for multiple comparisons (false discovery rate = .05) 52 SNPs in the Class I, II and III regions were significantly associated with MS susceptibility in both datasets using the Cochran Armitage trend test. The discovery and replication datasets were merged and subjects carrying the HLA-DRB1*15:01 tagging SNP were excluded. Association tests showed that 48 of the 52 replicated SNPs retained significant associations with MS susceptibility independently of the HLA-DRB1*15:01 as defined by the tagging SNP. 20 Class I SNPs were associated with MS susceptibility with p-values ≤1×10−8. The most significantly associated SNP was rs4959039, a SNP in the downstream un-translated region of the non-classical HLA-G gene (Odds ratio 1.59, 95% CI 1.40, 1.81, p = 8.45×10−13) and is in linkage disequilibrium with several nearby SNPs. Logistic regression modeling showed that this SNP's contribution to MS susceptibility was independent of the Class II and Class III SNPs identified in this screen. Conclusions: A MHC Class I locus contributes to MS susceptibility independently of the HLA-DRB1*15:01 haplotype
Defining the Role of the MHC in Autoimmunity: A Review and Pooled Analysis
The major histocompatibility complex (MHC) is one of the most extensively studied regions in the human genome because of the association of variants at this locus with autoimmune, infectious, and inflammatory diseases. However, identification of causal variants within the MHC for the majority of these diseases has remained difficult due to the great variability and extensive linkage disequilibrium (LD) that exists among alleles throughout this locus, coupled with inadequate study design whereby only a limited subset of about 20 from a total of approximately 250 genes have been studied in small cohorts of predominantly European origin. We have performed a review and pooled analysis of the past 30 years of research on the role of the MHC in six genetically complex disease traits – multiple sclerosis (MS), type 1 diabetes (T1D), systemic lupus erythematosus (SLE), ulcerative colitis (UC), Crohn's disease (CD), and rheumatoid arthritis (RA) – in order to consolidate and evaluate the current literature regarding MHC genetics in these common autoimmune and inflammatory diseases. We corroborate established MHC disease associations and identify predisposing variants that previously have not been appreciated. Furthermore, we find a number of interesting commonalities and differences across diseases that implicate both general and disease-specific pathogenetic mechanisms in autoimmunity
Identification of a Sudden Cardiac Death Susceptibility Locus at 2q24.2 through Genome-Wide Association in European Ancestry Individuals
Sudden cardiac death (SCD) continues to be one of the leading causes of mortality worldwide, with an annual incidence estimated at 250,000–300,000 in the United States and with the vast majority occurring in the setting of coronary disease. We performed a genome-wide association meta-analysis in 1,283 SCD cases and >20,000 control individuals of European ancestry from 5 studies, with follow-up genotyping in up to 3,119 SCD cases and 11,146 controls from 11 European ancestry studies, and identify the BAZ2B locus as associated with SCD (P = 1.8×10−10). The risk allele, while ancestral, has a frequency of ∼1.4%, suggesting strong negative selection and increases risk for SCD by 1.92–fold per allele (95% CI 1.57–2.34). We also tested the role of 49 SNPs previously implicated in modulating electrocardiographic traits (QRS, QT, and RR intervals). Consistent with epidemiological studies showing increased risk of SCD with prolonged QRS/QT intervals, the interval-prolonging alleles are in aggregate associated with increased risk for SCD (P = 0.006)
TECRL, a new life‐threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT
Genetic causes of many familial arrhythmia syndromes remain elusive. In this study, whole-exome sequencing (WES) was carried out on patients from three different families that presented with life-threatening arrhythmias and high risk of sudden cardiac death (SCD). Two French Canadian probands carried identical homozygous rare variant in TECRL gene (p.Arg196Gln), which encodes the trans-2,3-enoyl-CoA reductase-like protein. Both patients had cardiac arrest, stress-induced atrial and ventricular tachycardia, and QT prolongation on adrenergic stimulation. A third patient from a consanguineous Sudanese family diagnosed with catecholaminergic polymorphic ventricular tachycardia (CPVT) had a homozygous splice site mutation (c.331+1G>A) in TECRL Analysis of intracellular calcium ([Ca(2+)]i) dynamics in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) generated from this individual (TECRLHom-hiPSCs), his heterozygous but clinically asymptomatic father (TECRLHet-hiPSCs), and a healthy individual (CTRL-hiPSCs) from the same Sudanese family, revealed smaller [Ca(2+)]i transient amplitudes as well as elevated diastolic [Ca(2+)]i in TECRLHom-hiPSC-CMs compared with CTRL-hiPSC-CMs. The [Ca(2+)]i transient also rose markedly slower and contained lower sarcoplasmic reticulum (SR) calcium stores, evidenced by the decreased magnitude of caffeine-induced [Ca(2+)]i transients. In addition, the decay phase of the [Ca(2+)]i transient was slower in TECRLHom-hiPSC-CMs due to decreased SERCA and NCX activities. Furthermore, TECRLHom-hiPSC-CMs showed prolonged action potentials (APs) compared with CTRL-hiPSC-CMs. TECRL knockdown in control human embryonic stem cell-derived CMs (hESC-CMs) also resulted in significantly longer APs. Moreover, stimulation by noradrenaline (NA) significantly increased the propensity for triggered activity based on delayed afterdepolarizations (DADs) in TECRLHom-hiPSC-CMs and treatment with flecainide, a class Ic antiarrhythmic drug, significantly reduced the triggered activity in these cells. In summary, we report that mutations in TECRL are associated with inherited arrhythmias characterized by clinical features of both LQTS and CPVT Patient-specific hiPSC-CMs recapitulated salient features of the clinical phenotype and provide a platform for drug screening evidenced by initial identification of flecainide as a potential therapeutic. These findings have implications for diagnosis and treatment of inherited cardiac arrhythmias
- …