47 research outputs found

    Poly(dimethylsiloxane)-Stabilized Polymer Particles from Radical Dispersion Polymerization in Nonpolar Solvent: Influence of Stabilizer Properties and Monomer Type

    Get PDF
    Particles used in electrophoretic display applications (EPD) must possess a number of specific properties ranging from stability in a nonaqueous solvent, high reflectivity, low polydispersity, and high charge density to name but a few. The manufacture of such particles is best carried out in the solvent of choice for the EPD. This opens up new interests in the study of nonaqueous dispersion polymerization methods, which deliver polymer particles suspended in low dielectric constant solvents. We explore in this article the use of a poly(dimethylsiloxane) macromonomer for the stabilization of poly(methyl methacrylate) polymer particles in dodecane, a typical solvent of choice for EPDs. The use of this stabilizer is significant for this method as it is directly soluble in the reaction medium as opposed to traditionally used poly(12-hydroxystearic acid)-based stabilizers. Additionally, the present study serves as a baseline for subsequent work, where nonaqueous dispersion polymerization will be used to create polymer particles encapsulating liquid droplets and solid pigment particles. In this article, the influence of the macromonomer molecular weight and concentration on the properties of the synthesized particles is studied. In addition, we investigate the possibility of synthesizing polymer particles from other monomers both as a comonomer for methyl methacrylate and as the only monomer in the process. The influence of macromonomer concentration is also studied throughout all experiments

    The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    Get PDF
    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage

    Home-based narrowband UVB, topical corticosteroid or combination for children and adults with vitiligo: HI-Light Vitiligo three-arm RCT

    Get PDF
    BACKGROUND: Systematic reviews suggest that narrowband ultraviolet B light combined with treatments such as topical corticosteroids may be more effective than monotherapy for vitiligo. OBJECTIVE: To explore the clinical effectiveness and cost-effectiveness of topical corticosteroid monotherapy compared with (1) hand-held narrowband ultraviolet B light monotherapy and (2) hand-held narrowband ultraviolet B light/topical corticosteroid combination treatment for localised vitiligo. DESIGN: Pragmatic, three-arm, randomised controlled trial with 9 months of treatment and a 12-month follow-up. SETTING: Sixteen UK hospitals - participants were recruited from primary and secondary care and the community. PARTICIPANTS: Adults and children (aged ≥ 5 years) with active non-segmental vitiligo affecting ≤ 10% of their body area. INTERVENTIONS: Topical corticosteroids [mometasone furoate 0.1% (Elocon®, Merck Sharp & Dohme Corp., Merck & Co., Inc., Whitehouse Station, NJ, USA) plus dummy narrowband ultraviolet B light]; narrowband ultraviolet B light (narrowband ultraviolet B light plus placebo topical corticosteroids); or combination (topical corticosteroids plus narrowband ultraviolet B light). Topical corticosteroids were applied once daily on alternate weeks and narrowband ultraviolet B light was administered every other day in escalating doses, with a dose adjustment for erythema. All treatments were home based. MAIN OUTCOME MEASURES: The primary outcome was self-assessed treatment success for a chosen target patch after 9 months of treatment ('a lot less noticeable' or 'no longer noticeable' on the Vitiligo Noticeability Scale). Secondary outcomes included blinded assessment of primary outcome and percentage repigmentation, onset and maintenance of treatment response, quality of life, side effects, treatment burden and cost-effectiveness (cost per additional successful treatment). RESULTS: In total, 517 participants were randomised (adults, n = 398; and children, n =  119; 52% male; 57% paler skin types I-III, 43% darker skin types IV-VI). At the end of 9 months of treatment, 370 (72%) participants provided primary outcome data. The median percentage of narrowband ultraviolet B light treatment-days (actual/allocated) was 81% for topical corticosteroids, 77% for narrowband ultraviolet B light and 74% for combination groups; and for ointment was 79% for topical corticosteroids, 83% for narrowband ultraviolet B light and 77% for combination. Target patch location was head and neck (31%), hands and feet (32%), and rest of the body (37%). Target patch treatment 'success' was 20 out of 119 (17%) for topical corticosteroids, 27 out of 123 (22%) for narrowband ultraviolet B light and 34 out of 128 (27%) for combination. Combination treatment was superior to topical corticosteroids (adjusted risk difference 10.9%, 95% confidence interval 1.0% to 20.9%; p = 0.032; number needed to treat = 10). Narrowband ultraviolet B light was not superior to topical corticosteroids (adjusted risk difference 5.2%, 95% confidence interval -4.4% to 14.9%; p = 0.290; number needed to treat = 19). The secondary outcomes supported the primary analysis. Quality of life did not differ between the groups. Participants who adhered to the interventions for > 75% of the expected treatment protocol were more likely to achieve treatment success. Over 40% of participants had lost treatment response after 1 year with no treatment. Grade 3 or 4 erythema was experienced by 62 participants (12%) (three of whom were using the dummy) and transient skin thinning by 13 participants (2.5%) (two of whom were using the placebo). We observed no serious adverse treatment effects. For combination treatment compared with topical corticosteroids, the unadjusted incremental cost-effectiveness ratio was £2328.56 (adjusted £1932) per additional successful treatment (from an NHS perspective). LIMITATIONS: Relatively high loss to follow-up limits the interpretation of the trial findings, especially during the post-intervention follow-up phase. CONCLUSION: Hand-held narrowband ultraviolet B light plus topical corticosteroid combination treatment is superior to topical corticosteroids alone for treatment of localised vitiligo. Combination treatment was relatively safe and well tolerated, but was effective in around one-quarter of participants only. Whether or not combination treatment is cost-effective depends on how much decision-makers are willing to pay for the benefits observed. FUTURE WORK: Development and testing of new vitiligo treatments with a greater treatment response and longer-lasting effects are needed. TRIAL REGISTRATION: Current Controlled Trials ISRCTN17160087. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 64. See the NIHR Journals Library website for further project information

    Poorer White Matter Microstructure Predicts Slower and More Variable Reaction Time Performance: Evidence for a Neural Noise Hypothesis in a Large Lifespan Cohort

    Get PDF
    Most prior research has focused on characterizing averages in cognition, brain characteristics, or behavior, and attempting to predict differences in these averages among individuals. However, this overwhelming focus on mean levels may leave us with an incomplete picture of what drives individual differences in behavioral phenotypes by ignoring the variability of behavior around an individual's mean. In particular, enhanced white matter (WM) structural microstructure has been hypothesized to support consistent behavioral performance by decreasing Gaussian noise in signal transfer. Conversely, lower indices of WM microstructure are associated with greater within-subject variance in the ability to deploy performance-related resources, especially in clinical populations. We tested a mechanistic account of the “neural noise” hypothesis in a large adult lifespan cohort (Cambridge Centre for Ageing and Neuroscience) with over 2500 adults (ages 18-102; 1508 female; 1173 male; 2681 behavioral sessions; 708 MRI scans) using WM fractional anisotropy to predict mean levels and variability in reaction time performance on a simple behavioral task using a dynamic structural equation model. By modeling robust and reliable individual differences in within-person variability, we found support for a neural noise hypothesis (Kail, 1997), with lower fractional anisotropy predicted individual differences in separable components of behavioral performance estimated using dynamic structural equation model, including slower mean responses and increased variability. These effects remained when including age, suggesting consistent effects of WM microstructure across the adult lifespan unique from concurrent effects of aging. Crucially, we show that variability can be reliably separated from mean performance using advanced modeling tools, enabling tests of distinct hypotheses for each component of performance

    Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group.The control of voluntary movement changes markedly with age. A critical component of motor control is the integration of sensory information with predictions of the consequences of action, arising from internal models of movement. This leads to sensorimotor attenuation – a reduction in the perceived intensity of sensations from self-generated compared to external actions. Here we show that sensorimotor attenuation occurs in 98% of adults in a population-based cohort (n=325; 18-88 years; the Cambridge Centre for Ageing and Neuroscience). Importantly, attenuation increases with age, in proportion to reduced sensory sensitivity. This effect is associated with differences in the structure and functional connectivity of the pre-supplementary motor area (pre-SMA), assessed with magnetic resonance imaging. The results suggest that ageing alters the balance between the sensorium and predictive models, mediated by the pre-SMA and its connectivity in frontostriatal circuits. This shift may contribute to the motor and cognitive changes observed with age.Cam-CAN research was supported by the Biotechnology and Biological Sciences Research Council (BB/H008217/1). JBR and NW were supported by the James S. McDonnell Foundation 21st Century Science Initiative, Scholar Award in Understanding Human Cognition. JBR was also supported by Wellcome Trust [103838] and the Medical Research Council [MC-A060-5PQ30]. DMW was supported by the Wellcome Trust [097803], Human Frontier Science Program and the Royal Society Noreen Murray Professorship in Neurobiology. RNH was supported by the Medical Research Council [MC-A060-5PR10]. RAK was supported by a Sir Henry Wellcome Trust Postdoctoral Fellowship [107392]. LG was funded by a Rubicon grant from the Netherlands Organisation for Scientific Research (NWO)

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore