143 research outputs found

    An experimental and simulation comparison of a 3-D abrupt contraction flow using the Molecular Stress Function constitutive model

    Get PDF
    YesThe Molecular Stress Function (MSF) constitutive model with convective constraint release mechanism has been shown to accurately fit a large range of viscometric data, and also shown to give strong vortex growth in flows of LDPE through planar and axisymmetric contractions. This work compares simulation and experimental results for 3-D flows of Lupolen 1840H LDPE through a contraction slit; 3-D effects are introduced by using a slit with a low upstream aspect ratio of 5:3. Comparisons are made with vortex opening angles obtained from streak photography, and also with stress birefringence measurements. The comparisons are made with two versions of the convective constraint release (CCR) mechanism. The simulated vortex angles for one version of the CCR mechanism are found to approach what is seen experimentally. The best-fit value for the stress optical coefficient was found to vary between CCRs and to decrease with flow rate. This is partially explained by different centreline elongational rates with the two CCRs, which in turn is related to different opening angles. A 3-D simulation is compared to the corresponding 2-D simulation. It is shown that both velocity vectors and birefringence show only small changes to around 60% of the distance to the side wall

    Development of high shrinkage Polyethylene Terephthalate (PET) shape memory polymer tendons for concrete crack closure

    Get PDF
    YesThe shrinkage force exerted by restrained shape memory polymers can potentially be used to close cracks in structural concrete. This paper describes the physical processing and experimental work undertaken to develop high shrinkage die-drawn Polyethylene Terephthalate (PET) shape memory polymer tendons for use within a crack closure system. The extrusion and die-drawing procedure used to manufacture a series of PET tendon samples is described. The results from a set of restrained shrinkage tests, undertaken at differing activation temperatures, are also presented along with the mechanical properties of the most promising samples. The stress developed within the tendons is found to be related to the activation temperature, the cross-sectional area and to the draw rate used during manufacture. Comparisons with commercially-available PET strip samples used in previous research are made, demonstrating an increase in restrained shrinkage stress by a factor of two for manufactured PET filament samples.Thanks must go to the EPSRC for their funding of the Materials for Life (M4L) project (EP/K026631/1) and to Costain Group PLC. for their industrial sponsorship of the project and author

    Properties of nylon-6-based composite reinforced with coconut shell particles and empty fruit bunch fibres

    Get PDF
    yesNovel natural fibre composites of nylon-6 reinforced with coconut shell (CS) particles and empty fruit bunch (EFB) fibres have been investigated. Fillers were alkali treated before melt compounding with nylon-6. Mechanical, thermal and rheological properties of composites were measured. Tensile modulus was found to improve with both fillers up to 16% for nylon-6/CS composite and 10% for nylon-6/EFB composite, whereas a moderate increase in tensile strength was observed only with CS composites. Differences in the strengthening mechanisms were explained by the morphology of the two fillers, empty fruit bunch fibres having a weaker cellular internal structure. Observation of composite morphology using SEM showed that both fillers were highly compatible with nylon-6 due to its hydrophilic nature. Both fillers were found to cause a slight drop in crystallinity of the nylon matrix and to lower melt viscosity at typical injection moulding strain rates. Moisture absorption increased with addition of both fillers

    A Combined Rheological and Thermomechanical Analysis Approach for the Assessment of Pharmaceutical Polymer Blends

    Get PDF
    YesThe viscoelastic nature of polymeric formulations utilised in drug products imparts unique thermomechanical attributes during manufacturing and over the shelf life of the product. Nevertheless, it adds to the challenge of understanding the precise mechanistic behaviour of the product at the microscopic and macroscopic level during each step of the process. Current thermomechanical and rheological characterisation techniques are limited to assessing polymer performance to a single phase and are especially hindered when the polymers are undergoing thermomechanical transitions. Since pharmaceutical processing can occur at these transition conditions, this study successfully proposes a thermomechanical characterisation approach combining both mechanical and rheological data to construct a comprehensive profiling of polymeric materials spanning both glassy and rubbery phases. This approach has been used in this study to assess the mechanical and rheological behaviour of heterogenous polymer blends of hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) over a shearing rate range of 0.1–100 s−1 and a temperature range of 30–200 °C. The results indicate that HPC and HPMC do not appear to interact when mixing and that their mixture exhibits the mechanistic properties of the two individual polymers in accordance with their ratio in the mixture. The ability to characterise the behaviour of the polymers and their mixtures before, throughout, and after the glassy to rubbery phase transition by application of the combined techniques provides a unique insight towards a quality-by-design approach to this and other polymer-based solid dosage forms, designed with the potential to accelerate their formulation process through obviating the need for multiple formulation trials

    Stoichiometric control of co-crystal formation by solvent free continuous co-crystallization (SFCC).

    Get PDF
    yesReproducible control of stoichiometry and difficulties in large scale production have been identified as two of the major challenges to commercial uptake of pharmaceutical co-crystals. The aim of this research was to extend the application of SFCC to control stoichiometry in caffeine: maleic acid co-crystals. Both 1:1 and 2:1 caffeine: maleic acid co-crystals were produced by control of the feedstock composition and process conditions. It was also observed that formation of 2:1 stoichiometry co-crystals involved formation of a 1:1 co-crystal which was subsequently transformed to 2:1 co-crystals. The investigation of stoichiometric transformation revealed that although 1:1 co-crystals could be converted into 2:1 form with addition of excess caffeine, the reverse was not possible in the presence of excess maleic acid. However, conversion from 2:1 into 1:1 was only achieved by melt seeding with the phase pure 1:1 co-crystals. This investigation demonstrates that stoichiometric control can be achieved by SFCC by control of parameters such as extrusion temperature

    Flood Suspended Sediment Transport: Combined Modelling from Dilute to Hyper-concentrated Flow

    Get PDF
    YesDuring flooding, the suspended sediment transport usually experiences a wide-range of dilute to hyper-concentrated suspended sediment transport depending on the local flow and ground con-ditions. This paper assesses the distribution of sediment for a variety of hyper-concentrated and dilute flows. Due to the differences between hyper-concentrated and dilute flows, a linear-power coupled model is proposed to integrate these considerations. A parameterised method combining the sediment size, Rouse number, mean concentration, and flow depth parameters has been used for modelling the sediment profile. The accuracy of the proposed model has been verified against the reported laboratory measurements and comparison with other published analytical methods. The proposed method has been shown to effectively compute the concentration profile for a wide range of suspended sediment conditions from hyper-concentrated to dilute flows. Detailed com-parisons reveal that the proposed model calculates the dilute profile with good correspondence to the measured data and other modelling results from literature. For the hyper-concentrated profile, a clear division of lower (bed-load) to upper layer (suspended-load) transport can be observed in the measured data. Using the proposed model, the transitional point from this lower to upper layer transport can be calculated precisely

    Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    Get PDF
    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained with the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly about 50 seconds) and those that are also burning helium (period spacing about 100 to 300 seconds).Comment: to appear as a Letter to Natur
    corecore