23 research outputs found

    Cement degradation in CO2 storage sites: a review on potential applications of nanomaterials

    Get PDF
    © 2018 The Author(s) Carbon capture and sequestration (CCS) has been employed to reduce global warming, which is one of the critical environmental issues gained the attention of scientific and industrial communities worldwide. Once implemented successfully, CCS can store at least 5 billion tons of CO2per year as an effective and technologically safe method. However, there have been a few issues raised in recent years, indicating the potential leakages paths created during and after injection. One of the major issues might be the chemical interaction of supercritical CO2with the cement, which may lead to the partial or total loss of the cement sheath. There have been many approaches presented to improve the physical and mechanical properties of the cement against CO2attack such as changing the water-to-cement ratio, employing pozzolanic materials, and considering non-Portland cements. However, a limited success has been reported to the application of these approaches once implemented in a real-field condition. To date, only a few studies reported the application of nanoparticles as sophisticated additives which can reinforce oil well cements. This paper provides a review on the possible application of nanomaterials in the cement industry where physical and mechanical characteristics of the cement can be modified to have a better resistance against corrosive environments such as CO2storage sites. The results obtained indicated that adding 0.5 wt% of Carbon NanoTubes (CNTs) and NanoGlass Flakes (NGFs) can reinforce the thermal stability and coating characteristics of the cement which are required to increase the chance of survival in a CO2sequestrated site. Nanosilica can also be a good choice and added to the cement by as much as 3.0 wt% to improve pozzolanic reactivity and thermal stability as per the reports of recent studies

    Quantification of Aqueous Monoethanolamine Concentration by Gas Chromatography for Postcombustion Capture of CO 2

    No full text
    The availability of reliable analytical methods for measuring amine concentrations is necessary for optimum operation of aqueous amine CO 2 separation systems being employed for postcombustion capture (PCC) of CO2. A GC-FID (gas chromatography with flame ionization detection) method is described for the reliable quantification of 30% (w/w) monoethanolamine (MEA) in severely degraded solvent samples. The observation of intermittent splitting of the MEA peak was a major concern with this approach. The use of a wide-bore column led to improved MEA peak resolution and peak shape. The reliability and robustness of the GC-FID method were assessed by analyzing degraded 30% (w/w) MEA solvent samples from CSIRO's pilot plant at AGL's Loy Yang power station in Victoria, Australia. The results were compared with those obtained by titration and total organic carbon (TOC) measurements of the same samples. The MEA concentrations obtained by the GC-FID and titration methods were statistically similar. In contrast, the MEA concentrations calculated from TOC were consistently higher than those obtained by both GC-FID and titration. © 2014 American Chemical Society
    corecore