2,244 research outputs found
Post density functional theoretical studies of highly polar semiconductive Pb(TiNi)O solid solutions: The effects of cation arrangement on band gap
We use a combination of conventional density functional theory (DFT) and
post-DFT methods, including the local density approximation plus Hubbard
(LDA+), PBE0, and self-consistent to study the electronic properties of
Ni-substituted PbTiO (Ni-PTO) solid solutions. We find that LDA
calculations yield unreasonable band structures, especially for Ni-PTO solid
solutions that contain an uninterrupted NiO layer. Accurate treatment of
localized states in transition-metal oxides like Ni-PTO requires post-DFT
methods. -site Ni/Ti cation ordering is also investigated. The -site
cation arrangement alters the bonding between Ni and O, and therefore strongly
affects the band gap () of Ni-PTO. We predict that Ni-PTO solid
solutions should have a direct band gap in the visible light energy range, with
polarization similar to the parent PbTiO. This combination of properties
make Ni-PTO solid solutions promising candidate materials for solar energy
conversion devices.Comment: 19 pages, 6 figure
Modeling GRB 050904: Autopsy of a Massive Stellar Explosion at z=6.29
GRB 050904 at redshift z=6.29, discovered and observed by Swift and with
spectroscopic redshift from the Subaru telescope, is the first gamma-ray burst
to be identified from beyond the epoch of reionization. Since the progenitors
of long gamma-ray bursts have been identified as massive stars, this event
offers a unique opportunity to investigate star formation environments at this
epoch. Apart from its record redshift, the burst is remarkable in two respects:
first, it exhibits fast-evolving X-ray and optical flares that peak
simultaneously at t~470 s in the observer frame, and may thus originate in the
same emission region; and second, its afterglow exhibits an accelerated decay
in the near-infrared (NIR) from t~10^4 s to t~3 10^4 s after the burst,
coincident with repeated and energetic X-ray flaring activity. We make a
complete analysis of available X-ray, NIR, and radio observations, utilizing
afterglow models that incorporate a range of physical effects not previously
considered for this or any other GRB afterglow, and quantifying our model
uncertainties in detail via Markov Chain Monte Carlo analysis. In the process,
we explore the possibility that the early optical and X-ray flare is due to
synchrotron and inverse Compton emission from the reverse shock regions of the
outflow. We suggest that the period of accelerated decay in the NIR may be due
to suppression of synchrotron radiation by inverse Compton interaction of X-ray
flare photons with electrons in the forward shock; a subsequent interval of
slow decay would then be due to a progressive decline in this suppression. The
range of acceptable models demonstrates that the kinetic energy and circumburst
density of GRB 050904 are well above the typical values found for low-redshift
GRBs.Comment: 45 pages, 7 figures, and ApJ accepted. Revised version, minor
modifications and 1 extra figur
A method to separate temperature and precipitation signals encoded in tree-ring widths for the western Tien Shan Mountains, northwest China
Separating temperature and precipitation signals encoded in tree rings is a complicated issue. Here, we present a separation method by combining two tree-ring width chronologies of Schrenk's spruce (Picea schrenkiana) from the upper and lower timberlines in the western Tien Shan Mountains, northwest China. Correlation analyses show that both chronologies correlate positively with precipitation. However, temperature correlates positively with the chronology from the upper timberline, while negatively with the chronology from the lower timberline. This suggests that the two chronologies contain similar precipitation information but opposite temperature signals. In light of this, we calculated the average and difference of the two chronologies, and found that each of them has a much stronger correlation with precipitation or temperature alone. Finally, we reconstructed local precipitation and temperature variations over the past 201 years by using the average and difference of the two chronologies. The two reconstructions do not have a significant correlation, but they have significant positive and negative relationships on the high- and low-frequency band, respectively.postprin
Quaternion-valued single-phase model for three-phase power system
In this work, a quaternion-valued model is proposed in lieu of the Clarke's α, β transformation to convert three-phase quantities to a hypercomplex single-phase signal. The concatenated signal can be used for harmonic distortion detection in three-phase power systems. In particular, the proposed model maps all the harmonic frequencies into frequencies in the quaternion domain, while the Clarke's transformation-based methods will fail to detect the zero sequence voltages. Based on the quaternion-valued model, the Fourier transform, the minimum variance distortionless response (MVDR) algorithm and the multiple signal classification (MUSIC) algorithm are presented as examples to detect harmonic distortion. Simulations are provided to demonstrate the potentials of this new modeling method
Recommended from our members
Multiple Avalanche Processes in Acoustic Emission Spectroscopy: Multibranching of the Energy−Amplitude Scaling
Several physical processes can conspire to generate avalanches in materials. Such processes include avalanche mechanisms like dislocation movements, friction processes by pinning magnetic domain walls, moving dislocation tangles, hole collapse in porous materials, collisions of ferroelectric and ferroelastic domain boundaries, kinks in interfaces, and many more. Known methods to distinguish between these species which allow the physical identification of multiavalanche processes are reviewed. A new approach where the scaling relationship between the avalanche energies E and amplitudes A is considered is then described. Avalanches with single mechanisms scale experimentally as E = SiAi2. The energy E reflects the duration D of the avalanche and A(t), the temporal amplitude. The scaling prefactor S depends explicitly on the duration of the avalanche and on details of the avalanche profiles. It is reported that S is not a universal constant but assumes different values depending on the avalanche mechanism. If avalanches coincide, they can still show multivalued scaling between E and A with different S-values for each branch. Examples for this multibranching effect in low-Ni 316L stainless steel, 316L stainless steel, polycrystalline Ni, TC21 titanium alloy, and a Fe40Mn40Co10Cr10 high-entropy alloy are shown
Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation
Transcritical flow of a stratified fluid past a broad localised topographic
obstacle is studied analytically in the framework of the forced extended
Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible
signs for the cubic nonlinear term in the Gardner equation corresponding to
different fluid density stratification profiles. We identify the range of the
input parameters: the oncoming flow speed (the Froude number) and the
topographic amplitude, for which the obstacle supports a stationary localised
hydraulic transition from the subcritical flow upstream to the supercritical
flow downstream. Such a localised transcritical flow is resolved back into the
equilibrium flow state away from the obstacle with the aid of unsteady coherent
nonlinear wave structures propagating upstream and downstream. Along with the
regular, cnoidal undular bores occurring in the analogous problem for the
single-layer flow modeled by the forced KdV equation, the transcritical
internal wave flows support a diverse family of upstream and downstream wave
structures, including solibores, rarefaction waves, reversed and trigonometric
undular bores, which we describe using the recent development of the nonlinear
modulation theory for the (unforced) Gardner equation. The predictions of the
developed analytic construction are confirmed by direct numerical simulations
of the forced Gardner equation for a broad range of input parameters.Comment: 34 pages, 24 figure
Possible evidence for the existence of the Fehrenbacher-Rice band: O K-edge XANES study on Pr1-xCaxBa2Cu3O7
X-ray absorption near edge structure (XANES), resistivity and thermoelectric
power have been measured on Pr1-xCaxBa2Cu3O7. These data reveal an intriguing
electronic structure in Pr-doped cuprates. The absorption peak in XANES
associated with the Fehrenbacher-Rice (FR) band has been identified. The
Ca-doped holes in Pr1-xCaxBa2Cu3O7 go to both the Zhang-Rice (ZR) and FR bands.
Comparative studies on the related samples suggest that the FR band is
partially filled and highly localized. Implications of these results on other
recent experiments, such as the observation of superconductivity in PrBa2Cu3O7
single crystals, are discussed.Comment: 9 pages, 2 tables, 4 figure
- …