29 research outputs found

    Immunogenicity and safety of the new MMR vaccine containing measles AIK-C, rubella Takahashi, and mumps RIT4385 strains in Japanese children: a randomized phase I/II clinical trial

    No full text
    Domestic measles, mumps, and rubella combined (MMR) vaccines were discontinued in 1993 in Japan because of the unexpected high incidence of aseptic meningitis. The introduction of an effective MMR vaccine with lower reactogenicity has been expected. A new MMR vaccine (JVC-001) was developed, using mumps RIT4385 strain in combination with Japanese measles AIK-C strain and rubella Takahashi strain (MR) vaccine. An open-label, randomized, phase I/II clinical study was conducted in 100 healthy Japanese children equally randomized to a JVC-001 group and an MR with monovalent mumps vaccine (Hoshino strain) group. Immunogenicity was assessed using a neutralization test (NT) for measles, hemagglutination inhibition (HI) test for rubella, and NT and enzyme-linked immune-sorbent assay (ELISA) for mumps strain with different genotypes (genotype A, B, D and G) on Day 0 and Day 42–56. Solicited and unsolicited adverse events (AEs) were recorded. Seroconversion rates of measles and rubella were both 100%. JVC-001 induced higher immunogenicity against mumps virus genotype G with seroconversion rate of 77.1% (95% confidence interval [CI]: 62.7–88.0%) compared to 65.3% (95% CI: 50.4–78.3%) in the control group. Geometric mean titer (GMT) was 12.5 (95% CI: 8.6–18.3) in the JVC-001 group and 7.1 (95% CI: 5.0–10.1) in the control group. JVC-001 also induced good immunogenicity against other genotypes (A, B and D). There was no apparent difference in the incidence of AEs between JVC-001 and the control groups. JVC-001 is safe and induces effective immunogenicity against measles, mumps, and rubella compared with the currently marketed vaccines in Japan

    Simultaneous spectrophotometric determination of orthophosphate and silicate ions in river water using ion-exclusion chromatography with an ascorbate solution as both eluent and reducing agent, followed by postcolumn derivatization with molybdate

    Get PDF
    Ion-exclusion chromatography was examined for the simultaneous spectrophotometric determinations of orthophosphate and silicate ions in river water using an ascorbate solution as both an eluent and a reducing agent, followed by postcolumn derivatization using molybdate. The detector responses for both ions increased with increased ascorbic acid concentration in the eluent, but peak tailing was observed for the orthophosphate ion. This suggests that the amounts of undissociated orthophosphate ions increased with decreased eluent pH, resulting in the penetration of the phosphate to the Donnan\u27s membrane formed on the resin surface. Using a neutral sodium ascorbate solution as an eluent, the peak shape was improved. With optimized separation and derivatization conditions (eluent, 20 mM sodium ascorbate; color-forming reagent, 10 mM sodium molybdate-60 mM sulfuric acid; flow rates of eluent and color-forming reagent, 0.4 and 0.2 mL min^; coil length, 6 m), the detection limits of orthophosphate and silicate ions were 0.9 and 1.0 µg L^, respectively. This method was successfully applied to the determination of orthophosphate and silicate ions in Kurose River water and the quantitative evaluations of the effects of water intake to a reservoir and discharge from a biological sewage treatment plant on the fluxes of these ions in the river

    Rapid and Convenient Single-Chain Variable Fragment-Employed Electrochemical C-Reactive Protein Detection System

    No full text
    Although IgG-free immunosensors are in high demand owing to ethical concerns, the development of convenient immunosensors that alternatively integrate recombinantly produced antibody fragments, such as single-chain variable fragments (scFvs), remains challenging. The low affinity of antibody fragments, unlike IgG, caused by monovalent binding to targets often leads to decreased sensitivity. We improved the affinity owing to the bivalent effect by fabricating a bivalent antibody–enzyme complex (AEC) composed of two scFvs and a single glucose dehydrogenase, and developed a rapid and convenient scFv-employed electrochemical detection system for the C-reactive protein (CRP), which is a homopentameric protein biomarker of systemic inflammation. The development of a point-of-care testing (POCT) system is highly desirable; however, no scFv-based CRP-POCT immunosensors have been developed. As expected, the bivalent AEC showed higher affinity than the single scFv and contributed to the high sensitivity of CRP detection. The electrochemical CRP detection using scFv-immobilized magnetic beads and the bivalent AEC as capture and detection antibodies, respectively, was achieved in 20 min without washing steps in human serum and the linear range was 1–10 nM with the limit of detection of 2.9 nM, which has potential to meet the criteria required for POCT application in rapidity, convenience, and hand-held detection devices without employing IgGs

    Clinical and Vaccine Immunology

    No full text
    Texto completo: acesso restrito. p. 1400-1408Leprosy is a chronic and debilitating human disease caused by infection with the Mycobacterium leprae bacillus. Despite the marked reduction in the number of registered worldwide leprosy cases as a result of the widespread use of multidrug therapy, the number of new cases detected each year remains relatively stable. This indicates that M. leprae is still being transmitted and that, without earlier diagnosis, M. leprae infection will continue to pose a health problem. Current diagnostic techniques, based on the appearance of clinical symptoms or of immunoglobulin M (IgM) antibodies that recognize the bacterial phenolic glycolipid I, are unable to reliably identify early-stage leprosy. In this study we examine the ability of IgG within leprosy patient sera to bind several M. leprae protein antigens. As expected, multibacillary leprosy patients provided stronger responses than paucibacillary leprosy patients. We demonstrate that the geographic locations of the patients can influence the antigens they recognize but that ML0405 and ML2331 are recognized by sera from diverse regions (the Philippines, coastal and central Brazil, and Japan). A fusion construct of these two proteins (designated leprosy IDRI diagnostic 1 [LID-1]) retained the diagnostic activity of the component antigens. Upon testing against a panel of prospective sera from individuals who developed leprosy, we determined that LID-1 was capable of diagnosing leprosy 6 to 8 months before the onset of clinical symptoms. A serological diagnostic test capable of identifying and allowing treatment of early-stage leprosy could reduce transmission, prevent functional disabilities and stigmatizing deformities, and facilitate leprosy eradication

    ML0405 and ML2331 Are Antigens of Mycobacterium leprae with Potential for Diagnosis of Leprosy

    No full text
    Despite the success of multidrug therapy in reducing the number of registered leprosy cases worldwide, evidence suggests that Mycobacterium leprae continues to be transmitted. A serological diagnostic test capable of identifying and allowing treatment of early-stage disease could reduce transmission and prevent the onset of the disability, a common complication of the disease in later stages. Serological diagnosis based on antibody recognition of phenolic glycolipid I (PGL-I) cannot reliably identify individuals with lower bacterial indices (BI). One strategy that might improve this situation is the provision of highly specific serological antigens that may be combined with PGL-I to improve the sensitivity of diagnosis. Using serological expression cloning with a serum pool of untreated lepromatous leprosy (LL) patients, we identified 14 strongly reactive M. leprae proteins, 5 of which were previously unstudied. We present results suggesting that two of these proteins, ML0405 and ML2331, demonstrate the ability to specifically identify LL/borderline lepromatous (BL) patients on the basis of immunoglobulin G (IgG) reactivity. In a household contact study, LL index cases were identified on the basis of this reactivity, while household contacts of these patients demonstrated undetectable reactivity. At a serum dilution of 1:800, suitable to reduce background PGL-I IgM reactivity, two BL patients with a BI of <4 showed anti-human polyvalent immunoglobulin G, A, and M reactivity measured with a combination of ML0405, ML2331, and natural disaccharide O-linked human serum albumin (NDOHSA) (synthetic PGL-I) that was markedly higher than IgM reactivity to NDOHSA alone. We suggest that ML0405 and ML2331 may have utility in serological leprosy diagnosis

    Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt

    No full text
    Wingless (Wg)/Wnt has been proposed to exert various functions as a morphogen depending on the levels of its signalling. Therefore, not just the concentration of Wg/Wnt, but also the responsiveness of Wg/Wnt-target cells to the ligand, must have a crucial function in controlling cellular outputs. Here, we show that a balance of ubiquitylation and deubiquitylation of the Wg/Wnt receptor Frizzled determines the cellular responsiveness to Wg/Wnt both in mammalian cells and in Drosophila, and that the cell surface level of Frizzled is regulated by deubiquitylating enzyme UBPY/ubiquitin-specific protease 8 (USP8). Although ubiquitylated Frizzled underwent lysosomal trafficking and degradation, UBPY/USP8-dependent deubiquitylation led to recycling of Frizzled to the plasma membrane, thereby elevating its surface level. Importantly, a gain and loss of UBPY/USP8 function led to up- and down-regulation, respectively, of canonical Wg/Wnt signalling. These results unveil a novel mechanism that regulates the cellular responsiveness to Wg/Wnt by controlling the cell surface level of Frizzled
    corecore