7,197 research outputs found
Endocranial Morphology of the Extinct North American Lion (Panthera atrox)
The extinct North American lion (Panthera atrox) is one of the largest felids (Mammalia, Carnivora) to have ever lived, and it is known from a plethora of incredibly well-preserved remains. Despite this abundance of material, there has been little research into its endocranial anatomy. CT scans of a skull of P. atrox from the Pleistocene La Brea Tar pits were used to generate the first virtual endocranium for this species and to elucidate previously unknown details of its brain size and gross structure, cranial nerves, and inner-ear morphology. Results show that its gross brain anatomy is broadly similar to that of other pantherines, although P. atrox displays less cephalic flexure than either extant lions or tigers, instead showing a brain shape that is reminiscent of earlier felids. Despite this unusual reduction in flexure, the estimated absolute brain size for this specimen is one of the largest reported for any felid, living or extinct. Its encephalization quotient (brain size as a fraction of the expected brain mass for a given body mass) is also larger than that of extant lions but similar to that of the other pantherines. The advent of CT scans has allowed nondestructive sampling of anatomy that cannot otherwise be studied in these extinct lions, leading to a more accurate reconstruction of endocranial morphology and its evolution
Physical and Physico - Chemical Characterization of Iron Ore Agglomerates
Performance of a blast furnace greatly depends on the quality of input raw materials, specifically the iron ore and its agglomerates, judged mainly through its reduction behaviour and strength property. Parameters like Reduci-bility Index (RI) and Reduction Degradation Index (RDI) are
considered to be the important quality indicators for the selection of iron bearing material as blast furnace burden
Comparisons of spectra determined using detector atoms and spatial correlation functions
We show how two level atoms can be used to determine the local time dependent
spectrum. The method is applied to a one dimensional cavity. The spectrum
obtained is compared with the mode spectrum determined using spatially filtered
second order correlation functions. The spectra obtained using two level atoms
give identical results with the mode spectrum. One benefit of the method is
that only one time averages are needed. It is also more closely related to a
realistic measurement scheme than any other definition of a time dependent
spectrum.Comment: 8 pages, 8 figure
N-[6-(Dibromomethyl)-2-pyridyl]-2,2-dimethylpropionamide
In the molecular structure of the title compound, C11H14Br2N2O, the dimethylpropionamide substituent is twisted slightly with respect to the pyridine ring, the interplanar angle being 12.3 (2)°. The dibromomethyl group is orientated in such a way that the two Br atoms are tilted away from the pyridine ring. In the crystal structure, molecules are associated into supramolecular chains by weak C—H⋯O interactions. The crystal is further stabilized by weak N—H⋯Br and C—H⋯N interactions
Evaluation of rice–legume–rice cropping system on grain yield, nutrient uptake, nitrogen fixation, and chemical, physical, and biological properties of soil
To achieve higher yields and better soil quality under rice–legume–rice (RLR) rotation in a rainfed production system, we formulated integrated nutrient management (INM) comprised of Azospirillum (Azo), Rhizobium (Rh), and phosphate-solubilizing bacteria (PSB) with phosphate rock (PR), compost, and muriate of potash (MOP). Performance of bacterial bioinoculants was evaluated by determining grain yield, nitrogenase activity, uptake and balance of N, P, and Zn, changes in water stability and distribution of soil aggregates, soil organic C and pH, fungal/bacterial biomass C ratio, casting activities of earthworms, and bacterial community composition using denaturing gradient gel electrophoresis (DGGE) fingerprinting. The performance comparison was made against the prevailing farmers’ nutrient management practices [N/P2O5/K2O at 40:20:20 kg ha−1 for rice and 20:30:20 kg ha−1 for legume as urea/single super-phosphate/MOP (urea/SSP/MOP)]. Cumulative grain yields of crops increased by 7–16% per RLR rotation and removal of N and P by six crops of 2 years rotation increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots over that in compost alone or urea/SSP/MOP plots. Apparent loss of soil total N and P at 0–15 cm soil depth was minimum and apparent N gain at 15–30 cm depth was maximum in Azo/Rh plus PSB dual INM plots. Zinc uptake by rice crop and diethylenetriaminepentaacetate-extractable Zn content in soil increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Total organic C content in soil declined at 0–15 cm depth and increased at 15–30 cm depth in all nutrient management plots after a 2-year crop cycle; however, bacterial bioinoculants-based INM plots showed minimum loss and maximum gain of total organic C content in the corresponding soil depths. Water-stable aggregation and distribution of soil aggregates in 53–250- and 250–2,000 μm classes increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Fungal/bacterial biomass C ratio seems to be a more reliable indicator of C and N dynamics in acidic soils than total microbial biomass C. Compost alone or Azo/Rh plus PSB dual INM plots showed significantly (P < 0.05) higher numbers of earthworms’ casts compared to urea/SSP/MOP alone and bacterial bioinoculants with urea or SSP-applied plots. Hierarchical cluster analysis based on similarity matrix of DGGE profiles revealed changes in bacterial community composition in soils due to differences in nutrient management, and these changes were seen to occur according to the states of C and N dynamics in acidic soil under RLR rotation
Indefinite Causal Order in a Quantum Switch
In quantum mechanics events can happen in no definite causal order: in
practice this can be verified by measuring a causal witness, in the same way
that an entanglement witness verifies entanglement. Indefinite causal order can
be observed in a quantum switch, where two operations act in a quantum
superposition of the two possible orders. Here we realise a photonic quantum
switch, where polarisation coherently controls the order of two operations,
and , on the transverse spatial mode of the photons. Our
setup avoids the limitations of earlier implementations: the operations cannot
be distinguished by spatial or temporal position. We show that our quantum
switch has no definite causal order, by constructing a causal witness and
measuring its value to be 18 standard deviations beyond the definite-order
bound
- …