50 research outputs found
Gravel bar inundation frequency: an indicator for the ecological potential of a river
River engineeringRiver habitat management and restoratio
Novel findings on the metabolic effects of the low glycaemic carbohydrate isomaltulose (Palatinose™)
The slow digestible disaccharide isomaltulose (iso; Palatinose™) is available as novel functional carbohydrate ingredient for manufacturing of low glycaemic foods and beverages. Although basically characterised, various information on physiological effects of iso are still lacking. Thus, the objective of the present study was to expand scientific knowledge of physiological characteristics of iso by a set of three human intervention trials. Using an ileostomy model, iso was found to be essentially absorbed, irrespective of the nature of food (beverage and solid food). Apparent digestibility of 50 g iso from two different meals was 95·5 and 98·8 %; apparent absorption was 93·6 and 96·1 %, respectively. In healthy volunteers, a single dose intake of iso resulted in lower postprandial blood glucose and insulin responses than did sucrose (suc), while showing prolonged blood glucose delivery over 3 h test. In a 4-week trial with hyperlipidaemic individuals, regular consumption of 50 g/d iso within a Western-type diet was well tolerated and did not affect blood lipids. Fasting blood glucose and insulin resistance were lower after the 4-week iso intervention compared with baseline. This would be consistent with possible beneficial metabolic effects as a consequence of the lower and prolonged glycaemic response and lower insulinaemic burden. However, there was no significant difference at 4 weeks after iso compared with suc. In conclusion, the study shows that iso is completely available from the small intestine, irrespective of food matrix, leading to a prolonged delivery of blood glucose. Regular iso consumption is well tolerated also in subjects with increased risk for vascular diseases
The Iceman's Last Meal Consisted of Fat, Wild Meat, and Cereals
The history of humankind is marked by the constant
adoption of new dietary habits affecting human
physiology, metabolism, and even the development
of nutrition-related disorders. Despite clear archaeological evidence for the shift from hunter-gatherer
lifestyle to agriculture in Neolithic Europe [1], very little information exists on the daily dietary habits of our
ancestors. By undertaking a complementary -omics
approach combined with microscopy, we analyzed
the stomach content of the Iceman, a 5,300-yearold European glacier mummy [2, 3]. He seems to
have had a remarkably high proportion of fat in his
diet, supplemented with fresh or dried wild meat,
cereals, and traces of toxic bracken. Our multipronged approach provides unprecedented analytical depth, deciphering the nutritional habit, meal
composition, and food-processing methods of this
Copper Age individual
Effects of EpCAM overexpression on human breast cancer cell lines
<p>Abstract</p> <p>Background</p> <p>Recently, EpCAM has attracted major interest as a target for antibody- and vaccine-based cancer immunotherapies. In breast cancer, the EpCAM antigen is overexpressed in 30-40% of all cases and this increased expression correlates with poor prognosis. The use of EpCAM-specific monoclonal antibodies is a promising treatment approach in these patients.</p> <p>Methods</p> <p>In order to explore molecular changes following EpCAM overexpression, we investigated changes of the transcriptome upon EpCAM gene expression in commercially available human breast cancer cells lines Hs578T and MDA-MB-231. To assess cell proliferation, a tetrazolium salt based assay was performed. A TCF/LEF Reporter Kit was used to measure the transcriptional activity of the Wnt/β-catenin pathway. To evaluate the accumulation of β-catenin in the nucleus, a subcellular fractionation assay was performed.</p> <p>Results</p> <p>For the first time we could show that expression profiling data of EpCAM transfected cell lines Hs578T<sup>EpCAM </sup>and MDA-MB-231<sup>EpCAM </sup>indicate an association of EpCAM overexpression with the downregulation of the Wnt signaling inhibitors SFRP1 and TCF7L2. Confirmation of increased Wnt signaling was provided by a TCF/LEF reporter kit and by the finding of the nuclear accumulation of ß-catenin for MDA-MB-231<sup>EpCAM </sup>but not Hs578T<sup>EpCAM </sup>cells. In Hs578T cells, an increase of proliferation and chemosensitivity to Docetaxel was associated with EpCAM overexpression.</p> <p>Conclusions</p> <p>These data show a cell type dependent modification of Wnt signaling components after EpCAM overexpression in breast cancer cell lines, which results in marginal functional changes. Further investigations on the interaction of EpCAM with SFRP1 and TCF7L2 and on additional factors, which may be causal for changes upon EpCAM overexpression, will help to characterize unique molecular properties of EpCAM-positive breast cancer cells.</p
Simple large wood structures promote hydromorphological heterogeneity and benthic macroinvertebrate diversity in low-gradient rivers
This work has been carried out within the SMART Joint Doctorate Programme ‘Science for the MAnagement of Rivers and their Tidal systems’ funded by the Erasmus Mundus programme of the European Union
New approach methodologies to enhance human health risk assessment of immunotoxic properties of chemicals: a PARC (Partnership for the Assessment of Risk from Chemicals) project
As a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC)
New approach methodologies to enhance human health risk assessment of immunotoxic properties of chemicals — a PARC (Partnership for the Assessment of Risk from Chemicals) project
As a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC)
Seven decades of hydrogeomorphological changes in a near‐natural (Sense River) and a hydropower‐regulated (Sarine River) pre‐Alpine river floodplain in Western Switzerland
This is the peer reviewed version which has been published in final form at https://doi.org/10.1002/esp.5017 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Hydropower alteration of the natural flow and sediment regime can severely degrade hydromorphology, thereby threatening biodiversity and overall ecosystem processes of rivers and their floodplains. Using sequences of aerial images, we quantified seven decades (1938/1942–2013) of spatiotemporal changes in channel and floodplain morphology, as well as changes in the physical habitats, of three floodplain river reaches of the Swiss pre‐Alps, two hydropower‐regulated and one near‐natural. In the Sarine River floodplain, within the first decades of hydropower impairment, the magnitude and frequency of flood events (Q2, Q10, Q30) decreased substantially. As a result, the area of pioneer floodplain habitats that depend on flood activity and sediment dynamic, such as bare sediments, decreased dramatically by approximately 95%. However, by 2013 vegetated areas had generally increased in comparison to the pre‐regulation period in 1943, indicating general vegetative colonization. Between 1943 and 2013, the active channel underwent essential narrowing (up to 62% width reduction in the residual flow reach) and habitat turnover rates were very low (5% of the total floodplain area changed habitat type five to six times). In contrast, from the 1950s onwards, the near‐natural floodplain of the Sense River experienced recurrent narrowing and widening, and frequent changes between bare and vegetated areas, reflecting the shifting habitat mosaic concept typical for natural floodplains. In the three reaches investigated, we found that the active floodplain width and erosion of vegetated areas were primarily controlled by medium to large floods (Q10, Q30), which combined with reduced time intervals between ordinary floods ≥ Q2 most likely mobilized streambed sediments and limited the ability of vegetation to establish itself on bare gravel bars within the parafluvial zone. These findings can contribute to restoration action plans such as controlled flooding and sediment replenishments in the Sarine and other floodplain rivers of the Alps