19 research outputs found

    Strategies and performance of the CMS silicon tracker alignment during LHC Run 2

    Get PDF
    The strategies for and the performance of the CMS silicon tracking system alignment during the 2015–2018 data-taking period of the LHC are described. The alignment procedures during and after data taking are explained. Alignment scenarios are also derived for use in the simulation of the detector response. Systematic effects, related to intrinsic symmetries of the alignment task or to external constraints, are discussed and illustrated for different scenarios

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s=13TeV

    Get PDF
    A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb−1. The search is sensitive to resonances with masses between 1.3 and 6TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z′ and W′ resonances with masses below 4.8TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb. © 2023 The Author(s

    Search for a heavy composite Majorana neutrino in events with dilepton signatures from proton-proton collisions at √s=13 Tev

    Get PDF
    Results are presented of a search for a heavy Majorana neutrino N ⠃ decaying into two same-flavor leptons ⠃ (electrons or muons) and a quark-pair jet. A model is considered in which the N ⠃ is an excited neutrino in a compositeness scenario. The analysis is performed using a sample of proton-proton collisions at & RADIC;s = 13 TeV recorded by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 138 fb-1. The data are found to be in agreement with the standard model prediction. For the process in which the N ⠃ is produced in association with a lepton, followed by the decay of the N ⠃ to a same-flavor lepton and a quark pair, an upper limit at 95% confidence level on the product of the cross section and branching fraction is obtained as a function of the N ⠃ mass mN ⠃ and the compositeness scale ⠄. For this model the data exclude the existence of Ne (N & mu;) for mN ⠃ below 6.0 (6.1) TeV, at the limit where mN ⠃ is equal to ⠄. For mN ⠃ N 1 TeV, values of ⠄ less than 20 (23) TeV are excluded. These results represent a considerable improvement in sensitivity, covering a larger parameter space than previous searches in pp collisions at 13 TeV.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3

    Search for new particles in an extended Higgs sector with four b quarks in the final state at s = 13 TeV

    Get PDF
    Data availability: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in “CMS data preservation, re-use and open access policy” available online at https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=6032&filename=CMSDataPolicyV1.2.pdf&version=2 .A search for a massive resonance X decaying to a pair of spin-0 bosons φ that themselves decay to pairs of bottom quarks, is presented. The analysis is restricted to the mass ranges mφ from 25 to 100 GeV and mX from 1 to 3 TeV. For these mass ranges, the decay products of each φ boson are expected to merge into a single large-radius jet. Jet substructure and flavor identification techniques are used to identify these jets. The search is based on CERN LHC proton-proton collision data at √s = 13 TeV, collected with the CMS detector in 2016–2018, corresponding to an integrated luminosity of 138 fb−1. Model-specific limits, where the two new particles arise from an extended Higgs sector, are set on the product of the production cross section and branching fraction for X → φφ → (bb)(bb) as a function of the resonances’ masses, where both the X → φφ and φ → bb branching fractions are assumed to be 100%. These limits are the first of their kind on this process, ranging between 30 and 1 fb at 95% confidence level for the considered mass ranges.SCOAP

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    No full text
    International audienceThe Short Strip ASIC (SSA) is one of the four front-endchips designed for the upgrade of the CMS Outer Tracker for the HighLuminosity LHC. Together with the Macro-Pixel ASIC (MPA) it willinstrument modules containing a strip and a macro-pixel sensorstacked on top of each other. The SSA provides both full readout ofthe strip hit information when triggered, and, together with theMPA, correlated clusters called stubs from the two sensors for useby the CMS Level-1 (L1) trigger system. Results from the firstprototype module consisting of a sensor and two SSA chips arepresented. The prototype module has been characterized at theFermilab Test Beam Facility using a 120 GeV proton beam

    Search for W′ bosons decaying to a top and a bottom quark at s=13TeV in the hadronic final state

    No full text
    820Publikacja bezkosztow

    Search for Wγ resonances in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn></mml:math> TeV using hadronic decays of Lorentz-boosted W bosons

    No full text

    First measurement of the cross section for top quark pair production with additional charm jets using dileptonic final states in pp collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</mml:mtext></mml:math>

    No full text

    Performance of the CMS muon trigger system in proton-proton collisions at √(s) = 13

    No full text
    Abstract The muon trigger system of the CMS experiment uses a combination of hardware and software to identify events containing a muon. During Run 2 (covering 2015–2018) the LHC achieved instantaneous luminosities as high as 2 × 1034 while delivering proton-proton collisions at √(s) = 13. The challenge for the trigger system of the CMS experiment is to reduce the registered event rate from about 40MHz to about 1kHz. Significant improvements important for the success of the CMS physics program have been made to the muon trigger system via improved muon reconstruction and identification algorithms since the end of Run 1 and throughout the Run 2 data-taking period. The new algorithms maintain the acceptance of the muon triggers at the same or even lower rate throughout the data-taking period despite the increasing number of additional proton-proton interactions in each LHC bunch crossing. In this paper, the algorithms used in 2015 and 2016 and their improvements throughout 2017 and 2018 are described. Measurements of the CMS muon trigger performance for this data-taking period are presented, including efficiencies, transverse momentum resolution, trigger rates, and the purity of the selected muon sample. This paper focuses on the single- and double-muon triggers with the lowest sustainable transverse momentum thresholds used by CMS. The efficiency is measured in a transverse momentum range from 8 to several hundred. </jats:p

    Search for W′ bosons decaying to a top and a bottom quark at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math> in the hadronic final state

    No full text
    corecore