28 research outputs found

    Characterization of Oligomers of Heterogeneous Size as Precursors of Amyloid Fibril Nucleation of an SH3 Domain: An Experimental Kinetics Study

    Get PDF
    Correction: Characterization of Oligomers of Heterogeneous Size as Precursors of Amyloid Fibril Nucleation of an SH3 Domain: An Experimental Kinetics Study. PLoS ONE 9(1): 10.1371/annotation/dbb84118-9ada-43e4-8734-8f8322be1a59. doi: 10.1371/annotation/dbb84118-9ada-43e4-8734-8f8322be1a59Understanding the earliest molecular events during nucleation of the amyloid aggregation cascade is of fundamental significance to prevent amyloid related disorders. We report here an experimental kinetic analysis of the amyloid aggregation of the N47A mutant of the α-spectrin SH3 domain (N47A Spc-SH3) under mild acid conditions, where it is governed by rapid formation of amyloid nuclei. The initial rates of formation of amyloid structures, monitored by thioflavine T fluorescence at different protein concentrations, agree quantitatively with high-order kinetics, suggesting an oligomerization pre-equilibrium preceding the rate-limiting step of amyloid nucleation. The curves of native state depletion also follow high-order irreversible kinetics. The analysis is consistent with the existence of low-populated and heterogeneous oligomeric precursors of fibrillation that form by association of partially unfolded protein monomers. An increase in NaCl concentration accelerates fibrillation but reduces the apparent order of the nucleation kinetics; and a double mutant (K43A, N47A) Spc-SH3 domain, largely unfolded under native conditions and prone to oligomerize, fibrillates with apparent first order kinetics. On the light of these observations, we propose a simple kinetic model for the nucleation event, in which the monomer conformational unfolding and the oligomerization of an amyloidogenic intermediate are rapidly pre-equilibrated. A conformational change of the polypeptide chains within any of the oligomers, irrespective of their size, is the rate-limiting step leading to the amyloid nuclei. This model is able to explain quantitatively the initial rates of aggregation and the observed variations in the apparent order of the kinetics and, more importantly, provides crucial thermodynamic magnitudes of the processes preceding the nucleation. This kinetic approach is simple to use and may be of general applicability to characterize the amyloidogenic intermediates and oligomeric precursors of other disease-related proteins.This work was financed by the Andalucía Government (grant FQM-02838), the Spanish Ministry of Science and Innovation (grant BIO2009-07317), and the European Regional Development Fund of the European Union. D. Ruzafa is recipient of a research fellowship from the F.P.U. program of the Spanish Ministry of Education. L. Varela is financed by the G.R.E.I.B. program of the University of Granada

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    A new era for understanding amyloid structures and disease

    Get PDF
    The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Is acetazolamide really useful in the management of traumatic cerebrospinal fluid rhinorrhea?

    No full text
    Background: Traumatic cerebrospinal fluid (CSF) rhinorrhea is a serious and potentially fatal condition as it may lead to meningitis. As acetazolamide decreases CSF production and hence CSF pressure, it has been proposed that the medication may help in curing CSF rhinorrhea. There is no definitive evidence, however, that acetazolamide is actually beneficial in treating traumatic CSF rhinorrhea. The aim of this study was to determine if the administration of acetazolamide in patients of head trauma with CSF rhinorrhea was beneficial in decreasing the duration of CSF rhinorrhea. The acid-base and electrolyte changes caused by the drug were also studied. Materials and Methods: We conducted a single center randomized prospective study. Forty-four patients of head trauma with CSF rhinorrhea were divided into two groups, the experimental group (21 patients) was given acetazolamide; and, the control group (23 patients) did not receive the medication. The median duration of CSF leak in days, and the electrolyte changes observed on administration of the medication were recorded in both the groups. Results: Both the experimental and control groups were well matched in terms of age, sex, mechanism of injury, Glasgow Coma Scale (GCS) and the type of skull fracture. The median duration of CSF leak in the control group was of 4 days and in the study group, of 5 days. Acetazolamide caused significant metabolic acidosis and hypokalemia (as shown by decreased serum pH, serum bicarbonate and serum potassium levels) in the experimental group when compared to the control group. Conclusions: Acetazolamide did not influence the resolution of traumatic CSF rhinorrhea and instead lead to significant metabolic and electrolyte disturbances
    corecore