145 research outputs found
Role of Micro-RNA for Pain After Surgery: Narrative Review of Animal and Human Studies
One of the most prevalent symptoms after major surgery is pain. When postoperative pain treatment is unsatisfactory, it can lead to poor surgical recovery, decreased quality of life, and increased health care costs. Current analgesics, single or in combination, have limited efficacy due to low potency, limited duration of action, toxicities, and risk of addiction. The lack of nonaddictive strong analgesics along with the over prescription of opioids has led to an opioid epidemic in the United States. Therefore, there is an urgent need for the development of newer analgesics. Microribonucleic acids (miRNAs) are small noncoding RNA molecules that modulate protein synthesis in neurons and supporting cells (glia, leukocytes, and Schwann cells). The literature indicates that miRNA regulation is important in nociception. Here, we summarize the current evidence on the role of miRNAs on mechanisms involved in incisional, inflammatory, neuropathic, and cancer pain. We also discuss the role of modulating miRNA functions as potential therapeutic targets for analgesic use and opioid tolerance. Finally, we propose how the delivery of analog miRNAs (mimic-miRNAs or antago-miRNAs) could be introduced into clinical practice to provide analgesia in the perioperative period
The Time Machine: A Simulation Approach for Stochastic Trees
In the following paper we consider a simulation technique for stochastic
trees. One of the most important areas in computational genetics is the
calculation and subsequent maximization of the likelihood function associated
to such models. This typically consists of using importance sampling (IS) and
sequential Monte Carlo (SMC) techniques. The approach proceeds by simulating
the tree, backward in time from observed data, to a most recent common ancestor
(MRCA). However, in many cases, the computational time and variance of
estimators are often too high to make standard approaches useful. In this paper
we propose to stop the simulation, subsequently yielding biased estimates of
the likelihood surface. The bias is investigated from a theoretical point of
view. Results from simulation studies are also given to investigate the balance
between loss of accuracy, saving in computing time and variance reduction.Comment: 22 Pages, 5 Figure
NASA MSFC Materials & Process Development Flexible Sensing Technology
No abstract availabl
Particularized protection: UNSC mandates and the protection of civilians in armed conflict
The protection of civilians at risk in armed conflict has, since the late 1990s, become institutionalized at the United Nations (UN), gaining acceptance as a normative rationale for UN peacekeeping. However, the bulk of civilians in need of protection in armed conflict are unlikely to attain it. The article develops an argument on ‘particularized protection’ - particularized in that UN Security Council (SC) mandates are formulated and adjusted over time to direct mission protection to specific subsets of civilian populations, that is, those relevant to the UN itself, the host state, other states, NGOs and the media, leaving most local civilians receiving little effective protection. Particularized protection, we argue, is a result of the institutional dynamics involving actors producing mandates - the UNSC - and those providing protection - peacekeeping missions - whereby mandates are specified to direct mission protection to selected, particularized groups. We demonstrate these dynamics in two cases, Côte d’Ivoire and Somalia
In Vivo Analysis of the Notch Receptor S1 Cleavage
A ligand-independent cleavage (S1) in the extracellular domain of the mammalian Notch receptor results in what is considered to be the canonical heterodimeric form of Notch on the cell surface. The in vivo consequences and significance of this cleavage on Drosophila Notch signaling remain unclear and contradictory. We determined the cleavage site in Drosophila and examined its in vivo function by a transgenic analysis of receptors that cannot be cleaved. Our results demonstrate a correlation between loss of cleavage and loss of in vivo function of the Notch receptor, supporting the notion that S1 cleavage is an in vivo mechanism of Notch signal control
Uropathogenic Escherichia coli P and Type 1 Fimbriae Act in Synergy in a Living Host to Facilitate Renal Colonization Leading to Nephron Obstruction
The progression of a natural bacterial infection is a dynamic process influenced by the physiological characteristics of the target organ. Recent developments in live animal imaging allow for the study of the dynamic microbe-host interplay in real-time as the infection progresses within an organ of a live host. Here we used multiphoton microscopy-based live animal imaging, combined with advanced surgical procedures, to investigate the role of uropathogenic Escherichia coli (UPEC) attachment organelles P and Type 1 fimbriae in renal bacterial infection. A GFP+ expressing variant of UPEC strain CFT073 and genetically well-defined isogenic mutants were microinfused into rat glomerulus or proximal tubules. Within 2 h bacteria colonized along the flat squamous epithelium of the Bowman's capsule despite being exposed to the primary filtrate. When facing the challenge of the filtrate flow in the proximal tubule, the P and Type 1 fimbriae appeared to act in synergy to promote colonization. P fimbriae enhanced early colonization of the tubular epithelium, while Type 1 fimbriae mediated colonization of the center of the tubule via a mechanism believed to involve inter-bacterial binding and biofilm formation. The heterogeneous bacterial community within the tubule subsequently affected renal filtration leading to total obstruction of the nephron within 8 h. Our results reveal the importance of physiological factors such as filtration in determining bacterial colonization patterns, and demonstrate that the spatial resolution of an infectious niche can be as small as the center, or periphery, of a tubule lumen. Furthermore, our data show how secondary physiological injuries such as obstruction contribute to the full pathophysiology of pyelonephritis
A missense mutation in Katnal1 underlies behavioural, neurological and ciliary anomalies
Microtubule severing enzymes implement a diverse range of tissue-specific molecular functions throughout development and into adulthood. Although microtubule severing is fundamental to many dynamic neural processes, little is known regarding the role of the family member Katanin p60 subunit A-like 1, KATNAL1, in central nervous system (CNS) function. Recent studies reporting that microdeletions incorporating the KATNAL1 locus in humans result in intellectual disability and microcephaly suggest that KATNAL1 may play a prominent role in the CNS; however, such associations lack the functional data required to highlight potential mechanisms which link the gene to disease symptoms. Here we identify and characterise a mouse line carrying a loss of function allele in Katnal1. We show that mutants express behavioural deficits including in circadian rhythms, sleep, anxiety and learning/memory. Furthermore, in the brains of Katnal1 mutant mice we reveal numerous morphological abnormalities and defects in neuronal migration and morphology. Furthermore we demonstrate defects in the motile cilia of the ventricular ependymal cells of mutants, suggesting a role for Katnal1 in the development of ciliary function. We believe the data we present here are the first to associate KATNAL1 with such phenotypes, demonstrating that the protein plays keys roles in a number of processes integral to the development of neuronal function and behaviour.Molecular Psychiatry advance online publication, 4 April 2017; doi:10.1038/mp.2017.54
Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas
RNA polymerase II mediates the transcription of all protein-coding genes in eukaryotic cells, a process that is fundamental to life. Genomic mutations altering this enzyme have not previously been linked to any pathology in humans, which is a testament to its indispensable role in cell biology. On the basis of a combination of next-generation genomic analyses of 775 meningiomas, we report that recurrent somatic p.Gln403Lys or p.Leu438_His439del mutations in POLR2A, which encodes the catalytic subunit of RNA polymerase II (ref. 1), hijack this essential enzyme and drive neoplasia. POLR2A mutant tumors show dysregulation of key meningeal identity genes including WNT6 and ZIC1/ZIC4. In addition to mutations in POLR2A, NF2, SMARCB1, TRAF7, KLF4, AKT1, PIK3CA, and SMO4 we also report somatic mutations in AKT3, PIK3R1, PRKAR1A, and SUFU in meningiomas. Our results identify a role for essential transcriptional machinery in driving tumorigenesis and define mutually exclusive meningioma subgroups with distinct clinical and pathological features
Loss of PTB or Negative Regulation of Notch mRNA Reveals Distinct Zones of Notch and Actin Protein Accumulation in Drosophila Embryo
Polypyrimidine Tract Binding (PTB) protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1) the Notch mRNA is a potential target of PTB, (2) PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3) the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions
- …