5 research outputs found

    Cri-du-chat syndrome mimics Silver-Russell syndrome depending on the size of the deletion: a case report

    Get PDF
    BackgroundSilver-Russell Syndrome (SRS) is a rare growth-related genetic disorder mainly characterized by prenatal and postnatal growth failure. Although molecular causes are not clear in all cases, the most common mechanisms involved in SRS are loss of methylation on chromosome 11p15 (approximate to 50%) and maternal uniparental disomy for chromosome 7 (upd(7)mat) (approximate to 10%).Case presentationWe present a girl with clinical suspicion of SRS (intrauterine and postnatal growth retardation, prominent forehead, triangular face, mild psychomotor delay, transient neonatal hypoglycemia, mild hypotonia and single umbilical artery). Methylation and copy number variations at chromosomes 11 and 7 were studied by methylation-specific multiplex ligation-dependent probe amplification and as no alterations were found, molecular karyotyping was performed. A deletion at 5p15.33p15.2 was identified (arr[GRCh37] 5p15.33p15.2(25942-11644643)x1), similar to those found in patients with Cri-du-chat Syndrome (CdCS). CdCS is a genetic disease resulting from a deletion of variable size occurring on the short arm of chromosome 5 (5p-), whose main feature is a high-pitched mewing cry in infancy, accompanied by multiple congenital anomalies, intellectual disability, microcephaly and facial dysmorphism.ConclusionsThe absence of some CdCS features in the current patient could be due to the fact that in her case the critical regions responsible do not lie within the identified deletion. In fact, a literature review revealed a high degree of concordance between the clinical manifestations of the two syndromes.The costs of the publication and molecular analyses of this research were funded by grants from Instituto de Salud Carlos III (Institute of Health Carlos III) of the Spanish Ministry of Economy and Competitiveness, co-financed by the European Regional Development Fund (PI16/00073), the Department of Health of the Basque Government (GV2016111105; GV2017111040), and the University of the Basque Country UPV/EHU (PIF17/29)

    Mutations, Genes, and Phenotypes Related to Movement Disorders and Ataxias

    Get PDF
    26 páginas, 4 figuras, 3 tablasOur clinical series comprises 124 patients with movement disorders (MDs) and/or ataxia with cerebellar atrophy (CA), many of them showing signs of neurodegeneration with brain iron accumulation (NBIA). Ten NBIA genes are accepted, although isolated cases compatible with abnormal brain iron deposits are known. The patients were evaluated using standardised clinical assessments of ataxia and MDs. First, NBIA genes were analysed by Sanger sequencing and 59 patients achieved a diagnosis, including the detection of the founder mutation PANK2 p.T528M in Romani people. Then, we used a custom panel MovDisord and/or exome sequencing; 29 cases were solved with a great genetic heterogeneity (34 different mutations in 23 genes). Three patients presented brain iron deposits with Fe-sensitive MRI sequences and mutations in FBXO7, GLB1, and KIF1A, suggesting an NBIA-like phenotype. Eleven patients showed very early-onset ataxia and CA with cortical hyperintensities caused by mutations in ITPR1, KIF1A, SPTBN2, PLA2G6, PMPCA, and PRDX3. The novel variants were investigated by structural modelling, luciferase analysis, transcript/minigenes studies, or immunofluorescence assays. Our findings expand the phenotypes and the genetics of MDs and ataxias with early-onset CA and cortical hyperintensities and highlight that the abnormal brain iron accumulation or early cerebellar gliosis may resembling an NBIA phenotype.This work was supported by the Instituto de Salud Carlos III (ISCIII)—Subdirección General de Evaluación y Fomento de la Investigación within the framework of the National R + D+I Plan co-funded with European Regional Development Funds (ERDF) [Grants PI18/00147 and PI21/00103 to CE]; the Fundació La Marató TV3 [Grants 20143130 and 20143131 to BPD and CE]; and by the Generalitat Valenciana [Grant PROMETEO/2018/135 to CE]. Part of the equipment employed in this work was funded by Generalitat Valenciana and co-financed with ERDF (OP ERDF of Comunitat Valenciana 2014–2020). PS had an FPU-PhD fellowship funded by the Spanish Ministry of Education, Culture and Sport [FPU15/00964]. IH has a PFIS-PhD fellowship [FI19/00072]. ASM has a contract funded by the Spanish Foundation Per Amor a l’Art (FPAA)Peer reviewe

    Stress and annealing induced changes in the Curie temperature of amorphous and nanocrystalline FeZr and FeNb based alloys

    No full text
    The stress and annealing dependence of the Curie temperature in FeZrBCu alloys is presented. A change of about 50°/GPa has been observed. The change in amorphous matrix composition upon crystallization produces an expected increase in TC (about 200°C) which is similar to the experimentally observed increase. This behaviour is opposite to that observed in Fe-Nb based alloys.This work was supported by the Spanish CICYT under grant MAT93-0691. Two of the authors (P.G. and I.O.) wish to thank the Basque Government for financial support under a FPI granPeer reviewe

    In-fan-cia : educar de 0 a 6 años : revista de la Associació de Mestres Rosa Sensat

    No full text
    Se analiza el origen y significado de un taller de expresión. El taller nace para generar una cultura de la infancia basada en todas las experiencias que se realizan en la escuela. Además de esto, se propone como un lugar de investigación y de formación para las educadoras ya que les permite mostrarse de forma diferente ante los niños. En la Escuela Infantil Egunsenti, se realizan talleres de expresión con niños de 3 a 8 años, donde se organizan actividades con distintos materiales con el fin de fomentar la expresión y creatividad de los niños y niñas. A través de escritos, vídeos, paneles y otras imágenes, el taller recoge las vivencias como recuerdo para el centro educativo.CataluñaMadrid (Comunidad Autónoma). Servicio de Formación del Profesorado. CRIF Las Acacias; Calle General Ricardos, 179; 28025 Madrid; Tel. +34915250893; Fax +34914660991; [email protected]
    corecore